Chapter 2

Smallest, Infinite, and Closed
Sets

The Brouwer Fixed Point Theorem talks about how certain kinds of transforma-
tions of certain kinds of sets must leave at least one point where it started. To
see what ingredients we will need to prove such a theorem, consider some similar
cases in which such a result would not hold. This will lead us to four conditions
we must assume about our set and its transformation to obtain the theorem we
seek: connectedness, completeness, continuity, and compactness. Although it
will take us chapters to formalize precise definitions, we can see roughly what
these necessary conditions must be like by going back to our motivation about
taking a sheet of paper taken from a pad, crumpled and put back down on the
pad:

For example, if our paper were allowed to have a hole in it, the fixed point
we seek might be missing. When rotated a quarter turn, a square piece of
paper punctured at its center contains no fixed point. Intuitively, saying a set
is “complete” will mean that any holes, even ones we cannot name, are all filled
in.

If we allowed ourselves to imagine paper extending indefinitely like a plane
in all directions, then just sliding it along would leave no fixed points. Requiring
the sets we work with to be “compact” will prevent them from spilling outwards
without end like this.

If we started with a set consisting of two pieces of paper on two pads, then
we could just switch them and not leave anything fixed. The notion of “con-
nectedness” will help us capture the idea that the sets we want should be all of
one piece.

Finally, if we allow ourselves to rip the paper, then again all bets are off
concerning fixed points, since we could make holes or separate pieces even if
none were there at the onset. Requiring our transformation to be “continuous”
is how we will say that it can bend, stretch, fold, shrink, and do lots of other
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things but it cannot tear.

Formulating any of these four concepts much more precisely will require a
notion of closeness. In other words, we will need to work in a topological space
(X, K) as defined in the previous chapter. Even before getting to completeness,
we can already say in this situation what it means for a set to have nothing
obvious missing.

Definition 2.1 Suppose (X, K) is a topological space and A C X. We say that
A is closed in (X,K) if KA = A.

For the Euclidean closure operator K. on the line we have imagined as motiva-
tion, this usage is consistent with the fact that intervals like [a, b] that contain
their endpoints are usually called closed intervals. For the Euclidean closure op-
erator in the plane, the punctured square imagined above would certainly not
be closed since its closure would include the missing point. This example should
make us expect that, whatever other hypotheses go into proving the existence
of fixed points, we will want to be dealing with sets that are closed.

Notice that it only makes sense to say that a set is closed with respect to a
given closure operator. In other words, a particular set of points A could be left
fixed by closure operator K; and hence be closed in (X, K;) but not be closed
in (X, Kj,), a different topological space formed out of the same X by equipping
it with a different closure operator. For example, the only closed subsets of X
topologized by the trivial closure operator are the empty set ) (by Axiom 4)
and the whole space X (by our first fundamental result). On the other hand,
every subset of X is closed under the discrete closure operator.

In this chapter, we will develop another characterization of the closure of
a set A as the smallest closed set containing A. So that we can take unions
and intersections of lots of closed sets, we will have to think about families of
sets and how to index them. This involves getting serious about properties of
the counting numbers. In particular, we will distinguish among: sets whose
members are easy to imagine counting up because they are finite; infinite sets
we can count in principle even if we never finish; and sets that are so big it
does not even make sense to talk about counting their elements. In the end,
we will see that our axioms and definitions force us to admit closed sets on the
line under the Euclidean Closure that are much stranger looking than intervals
containing their endpoints.

2.1 Smallest sets

To begin making sense out of the intuition that the closure of A should be the
smallest closed set containing A, consider the following definition and lemma.
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Definition 2.2 Let F' denote a set of sets and let P denote a predicate on F,
meaning that for each set A € F' either P(A) =T or P(A) = F but not both.
We say that B is the smallest set in F satisfying P if P(B) =T and P(A) =T
implies B C A for all A€ F.

A similar definition for the largest set results by reversing the set inclusion. The
family F might typically be the power set 2% of a set X consisting of all the
subsets of X. For example, if F = 2% and P(A) = T if and only if 7 € A, then
{7} is the smallest subset of the integers Z satisfying P and Z is the largest.
On the other hand, for the predicate P(A) = T if and only if 7 ¢ A on the same
F'| there is no smallest set satisfying P.

The question of the existence of sets defined in this way deserves some care.
Logicians might object that we have given an “impredicative” definition because
of the way we are attempting to determine an object in terms of a set that
contains the object being defined. Here the object we wish to characterize is
the smallest set with a given property, but we do so using a set to which it is
supposed to belong, namely the set of all sets with that property. As mentioned
in the previous chapter, moves like this are what generate Russell’s Paradox as
well as other potential conundrums and contradictions.

Despite the need for caution to avoid a vicious circle, the form of definition
given above is quite useful in practice, as we shall see in several different con-
texts. For example, fix an A* C X in a topological space (X, K). We claim
that, if there does exist a smallest closed set containing this A*, it must equal
K (A*). To see this, set F = {A € 2X | A* C A}, the family of all supersets of A*
and consider the predicate P on this F' with P(A) = T if and only if KA = A,
or, in other words, the predicate that is true if and only if A is closed. In this
situation, suppose that the smallest set in F’ satisfying P exists and call it B.
Then, by definition of what it means to be the smallest set, we have B C K(A*)
because, K(A*) is a closed set containing A*. On the other hand, we also have
K(A*) C B by Theorem 1.9 because A* C B implies K(A*) C KB = B. We
conclude that K(A*) = B as claimed.

The point is that the definition above of the smallest set with a given prop-
erty can be quite convenient way of proving results — if we know whether such
a set exists. A general approach to the existence question might lead us to
Zorn’s Lemma, which is called a lemma but is really an axiom since it is not
a logical consequence of the usual axioms of mathematics. For our purpose,
namely the characterization of closure as the smallest closed superset, it is more
straightforward and useful to reformulate our definition in a way that seems less
suspicious.

Lemma 2.3 (Smallest Set Lemma) Let F' denote a set of sets and let P
denote a predicate on F'. If the smallest set in F' satisfying P exists, then it is
unique and equals the intersection of all A € F satisfying P(A) = T. On the
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other hand, if the intersection of all A € F satisfying P(A) =T is a set D such
that P(D) =T, then D is the smallest set in F' satisfying P.

In other words, if such a smallest set exists, we claim that it can be written as

{reX|JAc FwithxcAand P(A)=T} =[] A
AeG

where we set X = (J cp A is the union of all the sets in the family F' and
G={A€ F| P(A) =T}, the “truth set” of P.

Proof. Suppose that B, the smallest set of F' satisfying P, exists and let D
denote the intersection of all A € F satisfying P(A) = T. Because P(B) =T,
we see that B is one of the sets intersected to form D and so D C B. Because
B is a subset of every set used in forming this intersection, we also have B C D.
Hence B = D as claimed. The uniqueness of B follows from the definition of
what we mean by a smallest set since, if there were two, each would have to
be a subset of the other. The last statement follows from the definition of the
smallest set and the definition of intersection.

O

Recall that, given any set A in a topological space (X, K), we would like
to characterize KA as the smallest closed subset of X containing A. Does the
smallest closed set B containing A exist? Closed sets containing A certainly do
exist, including KA and X itself. Moreover, the intersection of all of them must
still contain A. The question now is whether or not the intersection of lots of
closed sets must be closed. We therefore turn to studying what does happen if
we take intersections and unions of families of closed sets. When considering
a set of sets F', it is convenient to assume that it is indexed by some set I,
meaning that A € F if and only if A = A; for some ¢ € I. In terms of this index
set, we write

ﬂA = ﬂAi = {z| (Viel)zecA}

AcF iel
UA = UA" ={z|(Fel) zeci}
A€EF i€l

to denote the intersection and union of all members of F'.

2.2 The finite case

We call a nonempty set X finite if it has an index set of the form I = {1,2,3,...,n}
for some n € Z*, meaning that we can write
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X = U {z:}

i€{1,2,...,n}

with z; € X for alli € {1,2,...,n}. In particular, suppose that we have a finite
family F' = {A;, Ao, ..., A,} of closed sets within a given topological space.
What can we say about the intersection

N A = AiNAsn...NA,

and union
T A = AAUA UL UA,

of the sets in this family?
From Axiom 2, we know that

K(AuB)=KAUKB

so clearly, if A and B are closed, so is their union. Then, in Exercise 1 of the
last section, you attempted to generalize the result to closures of unions of more
than two sets, e.g.,

K(A; U Ay U As) = KA; UKA, UKA;

K(A UAs U AU Ay) = KA UKA, UKA; UKA,

and so forth. The trick, of course, is to reduce each new case to one you have
already handled. For three closed sets, let A = A; U A,. This is the union of
two closed sets, hence it is closed as we have seen. Then let B = A3 and apply
the same argument again to conclude that the union of the two closed sets A
and B is closed. Similarly, we can group together the union of four closed sets
as the union of three, which we just showed must be closed, with the fourth.
This exhibits the total union as the union of two closed sets. Therefore it must
be closed. It seems clear that we can repeat this process any number of times
before halting; but how do we make the “and so forth” stage of the proof more
precise? How can we be sure that, for each given n € Z*, the union of n closed
sets really is closed?

A similar question arises when we consider intersections of closed sets. If A
and B satisfy KA = A and KB = B, then by Axiom 1 and 1.10, we have

ANBCK(ANnB)CKANKB=ANB

and so AN B equals K(A N B), proving that the closure of the intersection
of two closed sets is closed. Now given three closed sets, we can again group
them as above to see that the intersection of the first two is closed, and then
that the intersection of this set with the third must also be closed. Once we



2.2. THE FINITE CASE 27

know this, we can use it to treat the case n = 4, and so on up the line. We
could write out the argument for small values of n, but the argument strongly
suggests that, for each given n € Z*, the intersection of n closed sets really is
closed. How can we be sure of really proving this? After all, we are not dealing
with a finite number of assertions. Let P denote the predicate on Z* defined by
setting P(n) = T if and only if the intersection of n closed sets is closed. How
can we more formally prove our belief that P(n) =T for all n € Zt?

The answer is to use the Principle of Mathematical Induction. The
principle is actually one of the famed Peano Axioms that state the most im-
portant properties we expect the set of natural numbers {1,2,3,-- -} to possess.
The form of the induction principle we will use is stated as:

Definition 2.4 (The Principle of Mathematical Induction) If P(1) and (Vn €
Z7) P(n) = P(n+1), then (Vn € Z*) P(n).

This axiom seems reasonable enough; if you like, you can imagine a row of
dominoes standing up; when you topple the first one onto the second, then each
succeeding one will fall, no matter how many dominoes are in the line.

Let us now put our new bit of mathematical machinery to work on proving
that the union of finitely many closed sets is closed. We need to verify two
things: (1) if a given set is closed, then that set is closed; and (2) if the union of
n closed sets is closed, then the union of n + 1 sets is closed. Statement (1) is a
tautology and therefore holds. To see that statement (2) is true, call the union
of the first n closed sets A. By assumption, A is closed. By the second closure
operator axiom, the union of the n + 1-th set and A must also be closed. Since
the conditions of the principle of induction are satisfied, the statement holds
true for any finite number of sets.

Here is another way to look at the Principle of Mathematical Induction. Call
a A C 7Z progressive if 1 € Aand n € A impliesn+1 € A. In these terms, the
Principle of Mathematical Induction is equivalent to the assertion that Z* is
the smallest progressive subset of of Z: given the version that talks about sets,
we can deduce the one that talks about predicates by setting A equal to the
truth set of P; conversely, the set version follows from the one about predicates
if we apply it to to the predicate P that is true of n if and only if n € A. (For
yet another equivalent formulation, look up the Well Ordering Principle.)

The Principle of Mathematical Induction is remarkable because it allows
us to prove infinitely many statements P(1), P(2), P(3),... all at once. Note,
however, that each of these is only a statement about a finite value of n. In
particular, we have proven nothing so far about what happens when we take in-
finite unions or intersections of closed sets even though we have proven infinitely
many cases about finite unions and intersections.
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2.3 The Countable Case

We call a nonempty set X countable if it has an index set of the form I = ZT =
{1,2,3,...} for some, meaning that we can write

1€ZT
with z; € X for all i € Z*. For example, the set of all integers Z is countable
because

z = |J{=:}
€Lt
with z; = (i —1)/2 for i odd and z; = —i/2 for i even. (By the way, if you
are wondering how to define Z once you have the Peano Axioms for Z*, a good
way to characterize the integers is as the smallest “ring” containing Z.)

The set of all ordered pairs (m,n) of positive integers, denoted Z* x Z* is
also countable, though this is perhaps not as obvious. As an exercise, you can
imagine making a list of all these pairs by first placing them in an array, then
moving up and down the diagonals on which m + n is constant starting with
(1,1).

Suppose that we have a countable family F' = {A, As, As, ... } of closed sets
within a given topological space. What can we say about the intersection

N {4} = {Ai}n{A:} N {45} ...

and union
Z1{Ai} = {A}U{A:}U{4s}...
of the sets in this family?

The first thing to notice is that the Principle of Mathematical Induction does
not help answer such questions. Expressed in terms of the predicate P(n) that
is true if and only if the union of n closed sets is always closed, the assertion
that the union of a countable infinity of closed sets is always closed is not of the
form P(n) for some n € Z*. You can think of it as P(oc0) if you like, but the
statement is false in general as the following example shows.

Example 2.5 Consider the topological space (L, K) defined in Exercise 2 with
L =7Z"U{oo} and

A if Ais finite,
KA = { AU{oo} if A is infinite.
In this space, every singleton {7} C Z7* is closed, and so Z' is the countable

union of closed sets. Yet Z" is not closed as a subset of L. since, in this topology,
K(Z")=1L.
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You can also think of examples using the Euclidean Closure Operator K. that
we have imagined (but not yet defined) to convince yourself that the infinite
union of closed sets need not be closed. What about intersections? It turns
out that intersections of arbitrarily many closed sets must be closed, as we
will see in the next section. We will also see there that considering the case of
countable intersections is not enough to justify the existence of a smallest closed
set containing a given set.

2.4 The uncountable case

Recall that we wanted to justify the existence of a smallest closed set containing
A by showing that the intersection of all the closed sets contain A is closed. We
claim that there may be more than countably many closed sets containing A to
intersect.

Example 2.6 Consider the topological space (Z',K) where K denotes the
discrete closure operator that makes every A C Z* closed. In other words, the
set of all closed subsets of this space is 22", the power set of the positive integers.
We claim this power set is not countable. For suppose on the countrary that
we could write

27" = {A u{4}u{4s}u...

for some countable collection of sets A; € 22" indexed by Z*. Then we could
form the set
B={ieZ|i¢ A;}.

Because this B is a member of 2" there would have to exist an n in the index
set Z' such that B = A,. Now we ask whether or not this n belongs to B.
Either answer leads to a contradiction, so it must be impossible to express oLt
as a countable union of sets.

This shows directly that the set of closed subsets of (Z", K) containing the
empty set (J is not countable. The argument can be modified to show that the
set of closed sets containing {1}, for example, is not countable, either. This is
the family we would have to intersect if computing K{1} by the (silly in this
case) method we have been studying.

It follows that we must consider index sets I more general than just ZT.
What we can prove is that if {A; | ¢ € I} is any nonempty family of closed
sets, then (1, 4; is closed. To see this, suppose j is a fixed element of I. Then
(Nicr Ai C Aj, by definition of intersection. By Theorem 1.9, it follows that
K(;,c; Ai C KA; = A;. Now this last inclusion is true for every j € I, which

means exactly that K(),c; A C ),y Ai- By Axiom C1, (),-; 4; is closed.
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As a corollary, we can finally assert that the intersection of all the closed
sets containing a given set A is closed, and so the smallest closed subset of X
containing A exists and equals KA, the the closure of A. The following omnibus
theorem summarizes the results we have found in this chapter so far.

Theorem 2.7 (Closed Set Theorem) Let (X,K) be any topological space.
Then in this space,

(a) X and ) are closed.
(b) If Ay,..., A, are closed, then Ay U---U A, is closed.

(c) If {A; | i € I} is a nonempty family of closed sets, then (), ; Ai is closed.

iel

(d) The closure K(A) of any A C X is the smallest closed subset of X con-
taining A.

The last item in this theorem says that, not only does a closure operator de-
termine what we consider closed sets, but knowing all the closed sets also de-
termines the closure operator. This should lead you to wonder whether, if you
just declared some subsets of a given X to be closed, can you define a closure
operator that does make those and only those sets closed? A good answer to
this question not only uses the results in this chapter, but also will help you ap-
preciate the standard way of defining a topological space that does not mention
closure operators. (See the exercises below.)

Exercises

1. Let (X, K) be a topological space and let {4; | i € I} be a family of (not neces-
sarily closed) subsets of X. Show that | J;.; KA4; C K{J;c; A; and K();,.; 4; C
Nicr KA;. (Note that this last statement is a generalization of Theorem 1.10.)

2. (harder)

Let X be a set. A topology on X, denoted by T, is a set of subsets of X (i.e.
UeT = U C X) such that:

(i) 9, X € T.
(i) f U,V € T then UNV € T.
(iii) If {U; | i € I} is asubset of T' (i.e. U; € T for each i € I), then |J,.; U; € T.

The standard definition of a topological space is a set X along with a topology
T on X. The elements of T" are called open sets.

This definition is equivalent to our nonstandard definition in the following sense.
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(a) Suppose K is a closure operator on X. Let

T={UcCX | X—U is closed}.

Show that T is a topology on X. Hint: This follows quickly from certain
facts we have already proved.

(b) Suppose T is a topology on X. If A C X, define

KA=X-— U V.
{VeT|VnA=0}

Show that K is a closure operator on X. Hint: The proof of C1 does not
require any part of the definition of a topology; neither does the proof
that KAUKB C K(AUB). To prove the other part of C2, use (ii) (after
a certain amount of sorting through the definitions, as usual). To prove
C3, use (iii). C4 is easier and uses (i).

(c) Show that if you start with a closure operator, derive a topology from it
as in (a), and then derive a closure operator from this topology as in (b),

then you get back the closure operator you started with. Hint: this is
equivalent to an earlier exercise.

(d) Show that if you start with a topology, derive a closure operator from it
as in (b), and then derive a topology from this closure operator as in (a),
then you get back the topology you started with. Hint: use (iii).

2.5 The Cantor middle-thirds set*

The Cantor set is a classic example of a closed set constructed using infinite
intersections on the real line with the Euclidean closure operator K.. To obtain
this set, start with [0,1]. Remove the middle third of the interval, (1/3,2/3),
to obtain the set [0,1/3] U [2/3,1]. Next remove the middle third of each of
the remaining two intervals (i.e. (1/9,2/9) and (7/9,8/9)) to obtain the set
[0,1/9]U[2/9,1/3]U[2/3,7/9]U[8/9,1]. Then remove the middle third of each
of the remaing four intervals, and so on. If we “continue this process forever,”
the Cantor set is what remains.
More precisely, define

AOZ[Oal]a

1 2 1
Api1=-AU(Z+24,).
3 U<3+3 >

The second line is shorthand indicating that A, is obtained by scaling A,, down
to one-third size and putting one copy in [0, 1/3] and another in [2/3,1]. The two
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Figure 2.1: The first three stages in the construction of the Cantor set.

lines together are an example of a recursive definition. By induction, A, is
defined for all n € Z*. (For recursive definitions of addition and multiplication,
see §C.3.) The first few values of A, are:

Ay =[0,1/3] U [2/3,1]
Ay =[0,1/9] U [2/9,1/3] U [2/3,7/9] U [8/9, 1]
As =[0,1/27] U [2/27,1/9] U [2/9,7/27] U [8/27,1/3]
U [2/3,19/27] U [20/27,7/9] U [8/9, 25/27] U [26/27, 1]

(See Figure 2.1.)
Define the Cantor set to be

C = ﬂ A,.

neZ+

We can use the Closed Set Theorem to show that C' is closed. By induction,
each A, is the union of finitely many closed intervals, and hence closed, by part
(b) of the Closed Set Theorem. By (c), C is closed. Not only is it nonempty,
it is uncountable (see Exercise below). In this sense, the Cantor set is big.
On the other hand, there is a sense in which the Cantor set is what remains
after we have removed almost everything from the interval. More precisely, let’s
calculate the sum S,, of the lengths of all the middle thirds removed through
stage n of our construction. At the first stage with n = 1, we take out an
interval of length % At the next stage, we remove two intervals of length %,
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then four intervals of length 2—17, etc. Thus, we find

1
Slzg
1 1
— 2_
S 3+ (3)
1 1 1
== 4+9(=
S5 =3 +2(3) +4(37)
1 1 1 1
=4+ 2(2) A=)+ -+ 2 (=
Sn=3 +2(3) +4(z2) +- +27(5)

This sum is a finite geometric series as described by the following result if
2

-1 —
we set a = 3 and r = 3.
Lemma 2.8 (Geometric Series Lemma) If a and r are real numbers with
r#1, and if n € Z*, then

a—ar®

a+ar+ar’+---+ar" ! = .
1—r

Consequently, if 0 <r <1 and a > 0, then

a
atar+ar’+ - +ar"t <

1—r7r

and the difference between the right and left sides of this inequality can be made
as small as you like by taking n sufficiently large.

The proof is a straightforward exercise using induction. Applying the Lemma
with a = % and r = %, we see that S, grows as close as you like to one as n gets
bigger and bigger. In other words, the length of the subset of the unit interval
left for the Cantor set to sit in grows smaller and smaller at each stage. It seems

reasonable to conclude that the Cantor set has length zero.

Exercises

1. Prove the Geometric Series Lemma using induction.

2. Prove that 1/4 € C. Hint: Show that if 1/4 ¢ A, then 3/4 ¢ A,_3. On
the other hand, show that 3/4 ¢ A, = 1/4 ¢ A,_1. Use the Well-Ordering
Principle to deduce a contradiction if 1/4 ¢ C.

3. Find a rule for determiniming when a point in [0, 1] is an element of the Cantor
set. Hint: use base 3 notation.
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4. Show that the Cantor set is uncountable. One way to do this is to notice
that each point in the Cantor set is the intersection of nested closed intervals.
To every such point x there corresponds an element A of 22" and vice versa
determined by requiring n € A if and only if z belongs to the left hand of the
two intervals that remain when their middle third is removed at stage n.



