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Legendre Functions and the Laplace Equation

in Spherical Coordinates

Dirichlet Problem on the Unit 3-Dimensional Unit Ball. We are going to
introduce the (associated) Legendre functions by considering the solution of
the Dirichlet problem of finding a harmonic function u on the unit ball in R

3

with a prescribed boundary value u1. In other words, we seek to solve the
equation

∆u = 0 on B

with u = u1 on the boundary of B, where ∆ is the Laplacian and B is the
unit ball in R

3 and u1 is a given function defined on the boundary of B.

Reduction of Laplace Equation in Spherical Coordinates for Special Product

Functions to Three Equations by the Method of the Separation of Variables.

Consider the spherical coordinate (r, θ, ϕ), where r is the distance to the
origin, θ is the longitude, and ϕ is the colatitude. In spherical coordinates
(r, θ, ϕ) the Laplace equation ∆u = 0 for a function u(r, θ, ϕ) reads

1

r2

∂

∂r

(

r2
∂u

∂r

)

+
1

r2 sin ϕ

∂

∂ϕ

(

sin ϕ
∂u

∂ϕ

)

+
1

r2 sin2 ϕ

∂2u

∂θ2
= 0.

Consider the special case where u is a product R(r)Φ(ϕ)Θ(θ). We are going to
use the method of separation of variables to reduce the Laplace equation for
the special product function u(r, θ, ϕ) = R(r)Φ(ϕ)Θ(θ) into three ordinary
differential equations. The Laplace equation

ΦΘ

r2

d

dr

(

r2
dR

dr

)

+
RΘ

r2 sin ϕ

d

dϕ

(

sin ϕ
dΦ

dϕ

)

+
RΦ

r2 sin2 ϕ

d2Θ

dθ2
= 0

for the special product function can be rewritten as

1

R

d

dr

(

r2
dR

dr

)

= −
1

Φ sin ϕ

d

dϕ

(

sin ϕ
dΦ

dϕ

)

−
1

Θ sin2 ϕ

d2Θ

dθ2
.

Both sides must be equal to a constant which we denote by λ. We now have
the reduction into the following two differential equations.

(♯)
1

R

d

dr

(

r2
dR

dr

)

= λ,
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−
1

Φ sin ϕ

d

dϕ

(

sin ϕ
dΦ

dϕ

)

−
1

Θ sin2 ϕ

d2Θ

dθ2
= λ.

We first observe that λ must be nonnegative, because the second differential
equation can be rewritten as

−
1

sin ϕ

d

dϕ

(

sin ϕ
d (ΘΦ)

dϕ

)

−
1

sin2 ϕ

d2 (ΘΦ)

dθ2
= λ (ΘΦ) .

Multiplying the equation by ΘΦ sin ϕ and integrating over 0 ≤ θ ≤ 2π and
0 ≤ ϕ ≤ π to get
∫ ∞

θ=0

∫ π

ϕ=0

(

sin ϕ +
1

sin ϕ

)(

d (ΘΦ)

dϕ

)2

dθ dϕ = λ

∫ ∞

θ=0

∫ π

ϕ=0

sin ϕ

(

d (ΘΦ)

dϕ

)2

dθ dϕ

due to the vanishing of sin ϕ at ϕ = 0 and ϕ = π, we conclude the constant
λ must be nonnegetive, because sin ϕ > 0 for 0 < ϕ < π.

We now reduce the differential equation

−
1

Φ sin ϕ

d

dϕ

(

sin ϕ
dΦ

dϕ

)

−
1

Θ sin2 ϕ

d2Θ

dθ2
= λ

further by separation of variables by first rewriting it as

1

Θ

d2Θ

dθ2
= −

sin ϕ

Φ

d

dϕ

(

sin ϕ
dΦ

dϕ

)

− λ sin2 ϕ.

Both sides must be equal to a constant which we denote by µ. We now have
its reduction into the following two differential equations.

1

Θ

d2Θ

dθ2
= µ,

sin ϕ
d

dϕ

(

sin ϕ
dΦ

dϕ

)

+
(

λ sin2 ϕ + µ
)

Φ = 0.

Since the function Θ = Θ (θ) in the first differential equation

(&)
1

Θ

d2Θ

dθ2
= µ

is periodic in θ of period 2π, it follows that µ must be nonpositive and equal
to −m2 for some nonnegative integer m. The second differential equation
now becomes

sin ϕ
d

dϕ

(

sin ϕ
dΦ

dϕ

)

+
(

λ sin2 ϕ − m2
)

Φ = 0.
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We now use the substitution ξ = cos ϕ to get rid of the sine and cosine func-
tions in this differential equation. In terms of the new independent variable
ξ the differential equation becomes

(

1 − ξ2
) d2Φ

dξ2
− 2ξ

dΦ

dξ
+

(

λ −
m2

1 − ξ2

)

Φ = 0.

Change the symbol Φ to y and the symbol ξ to x. We get the differential
equation

(

1 − x2
)

y′′ − 2xy′ +

(

λ −
m2

1 − x2

)

y = 0.

Differential Equations for Legendre Functions and Removal of the Constant

m by Transformation of Dependent Variable. We are now going to apply a
transformation to the dependent variable to get rid of the constant m in the
differential equation

(♮)
(

1 − x2
)

y′′ − 2xy′ +

(

λ −
m2

1 − x2

)

y = 0

so that with a new dependent variable y the differential equation becomes

(∗)
(

1 − x2
)

y′′ − 2xy′ + λ y = 0.

We will do the transformation of the dependent variable in the reverse di-
rection by starting out with the differential equation (∗) and apply trans-
formations to get to the differential equation (♮). We differentiate m times
the differential equation (∗) and use the formula for higher-derivatives of a
product of two functions

dm

dxm
(fg) =

m
∑

k=0

(

m

k

)

dkf

dxk

dm−kg

dxm−k

to get

(

1 − x2
) dm+2y

dxm+2
+ m (−2x)

dm+1y

dxm+1
+

m(m − 1)

2
(−2)

dmy

dxm

−2x
dm+1y

dxm+1
− 2m

dmy

dxm
+ λ

dmy

dxm
= 0.

We introduce the variable

v =
dmy

dxm
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to transform the last differential equation to

(†)
(

1 − x2
)

v′′ − 2(m + 1)xv′ + (λ − m(m + 1)) v = 0.

Now we let w = (1 − x2)
m

2 v and compute its derivatives of first and second
order

w′ =
m

2

(

1 − x2
)

m

2
−1

(−2x) v +
(

1 − x2
)

m

2 v′,

w′′ =
m

2

(m

2
− 1

)

(

1 − x2
)

m

2
−2

(−2x)2
v − m

(

1 − x2
)

m

2
−1

v

+m
(

1 − x2
)

m

2
−1

(−2x) v′ +
(

1 − x2
)

m

2 v′′.

We add up the following three equations

(

1 − x2
)

w′′ =
m

2

(m

2
− 1

)

(

1 − x2
)

m

2
−1

(−2x)2
v − m

(

1 − x2
)

m

2 v

+m
(

1 − x2
)

m

2 (−2x) v′ +
(

1 − x2
)

m

2
+1

v′′.

−2xw′ =
m

2

(

1 − x2
)

m

2
−1

(−2x)2
v +

(

1 − x2
)

m

2 (−2x) v′.
(

λ −
m2

1 − x2

)

w = λ
(

1 − x2
)

m

2 v − m2
(

1 − x2
)

m

2
−1

v

to get

(

1 − x2
)

w′′ − 2xw′ +

(

λ −
m2

1 − x2

)

w

=
(

1 − x2
)

m

2

((

1 − x2
)

v′′ − 2(m + 1)xv′ + Av
)

,

where

A = m(m − 2)
x2

1 − x2
− m + 2m

x2

1 − x2
+ λ −

m2

1 − x2

= m2
x2

1 − x2
− m + λ −

m2

1 − x2

= −m2 − m + λ = λ − m(m + 1).

From (†) it follows that

(

1 − x2
)

w′′ − 2xw′ +

(

λ −
m2

1 − x2

)

w = 0.
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which is the same as (∗) when we change the symbol w to y. Thus the
transformation

(‡) y 7→
(

1 − x2
)

m

2
dmy

dxm
.

of the dependent variable y changes the differential equation (♮) to the differ-
ential equation (∗). The differential equation (∗) is the differential equation
for Legendre functions.

Solution of Legendre’s Differential Equation by Power Series With Undeter-

mined Coefficients and the Determination of the Constant λ. We use the
power series

y(x) =
∞

∑

k=0

akx
k

with undetermined coefficients to solve the Legendre differential equation

(

1 − x2
)

y′′ − 2xy′ + λ y = 0.

We get

∞
∑

k=0

k(k − 1)akx
k−2 −

∞
∑

k=0

k(k − 1)akx
k − 2

∞
∑

k=0

kakx
k + λ

∞
∑

k=0

akx
k = 0.

After we change the dummy variable k in the first sum to k + 2, we get

∞
∑

k=0

((k + 2)(k + 1)ak+2 − k(k + 1)ak + λak) xk = 0.

Thus we have the following recurrent relation

ak+2 =
k(k + 1) − λ

(k + 2)(k + 1)
ak for k ≥ 0.

The logic is that if a power series satisfies the differential equation, then its
coefficients must satisfy the above recurrent relation. By the ratio test we
conclude that the radius of convergence of the power series is at least 1. Note
that we are free to choose values for a0 and a1. We now prove the following
claim.
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Claim. If there exists some k0 such that ak0
is nonzero and k0 (k0 + 1) > λ,

then the power series solution y(x) =
∑∞

k=0
akx

k of Legendre’s differential
equation (∗) cannot converge both at x = 1 and at x = −1.

To prove the Claim, we assume the contrary and proceed to derive a con-
tradiction. Since k0 (k0 + 1) > λ and ak0

6= 0, it follows that ak0+2ℓ and ak0

are all of the same sign for ℓ ≥ 0. Choose η equal to 1 or −1 such that
ηak0+2ℓ > 0 for all ℓ ≥ 0. From the recurrent relation which we rewrite as

ak+2 =
k(k + 1)

(k + 2)(k + 1)
ak −

λ

(k + 2)(k + 1)
ak

=
k

k + 2
ak −

λ

(k + 2)(k + 1)
ak.

For ℓ ≥ 1 we will by induction on ℓ ≥ 1 verify

η ak0+2ℓ ≥
k0 η ak0

k0 + 2ℓ
−

λ η ak0

(k0 + 2ℓ) (k0 + 1)

−
ℓ−2
∑

j=0

λ k0 η ak0

(k0 + 2j + 2) (k0 + 2j + 3) (k0 + 2j + 4)
.

The cases of ℓ = 1 is just the recurrent relation. The case ℓ = 2 comes from

ak0+4 =
k0 + 2

k0 + 4
ak0+2 −

λ

(k0 + 4)(k0 + 3)
ak0+2

=
k0 + 2

k0 + 4

(

k0

k0 + 2
ak0

−
λ

(k0 + 2)(k0 + 1)
ak0

)

−
λ

(k0 + 4)(k0 + 3)

(

k0

k0 + 2
ak0

−
λ

(k0 + 2)(k0 + 1)
ak0

)

≥
k0

k0 + 4
ak0

−
λ

(k0 + 4)(k0 + 1)
ak0

−
λk0

(k0 + 4)(k0 + 3)(k0 + 2)
ak.

Suppose it has been verified for ℓ ≥ 2 and we verify the situation where ℓ is
replaced by ℓ + 1 and get

η ak0+2ℓ+2 =
k0 + 2ℓ

k0 + 2ℓ + 2
η ak0+2ℓ −

λ

(k0 + 2ℓ + 2)(k0 + 2ℓ + 1)
η ak0+2ℓ

≥
k0 + 2ℓ

k0 + 2ℓ + 2

(

k0 η ak0

k0 + 2ℓ
−

λ η ak0

(k0 + 2ℓ) (k0 + 1)
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−

ℓ−2
∑

j=0

λ k0 η ak0

(k0 + 2j + 2) (k0 + 2j + 3) (k0 + 2j + 4)

)

−
λ

(k0 + 2ℓ + 2)(k0 + 2ℓ + 1)

(

k0 η ak0

k0 + 2ℓ
−

λ η ak0

(k0 + 2ℓ) (k0 + 1)

−
ℓ−2
∑

j=0

λ k0 η ak0

(k0 + 2j + 2) (k0 + 2j + 3) (k0 + 2j + 4)

)

≥
k0 η ak0

k0 + 2ℓ + 2
−

λ η ak0

(k0 + 2ℓ + 2) (k0 + 1)

−

ℓ−1
∑

j=0

λ k0 η ak0

(k0 + 2j + 2) (k0 + 2j + 3) (k0 + 2j + 4)
,

because (k0 + 2ℓ) (k0 + 2ℓ + 1)−λ > 0. Summing up over all positive integers
ℓ, we get

∞
∑

ℓ=1

η ak0+2ℓ+2 ≥

∞
∑

ℓ=1

k0 (k0 + 1) − λ

k0 + 2ℓ + 2
η ak0

−
∞

∑

ℓ=1

ℓ−1
∑

j=0

λ k0 η ak0

(k0 + 2j + 2) (k0 + 2j + 3) (k0 + 2j + 4)
.

Since both k0 (k0 + 1) − λ and η ak0
are positive, it follows that

∞
∑

ℓ=1

k0 (k0 + 1) − λ

k0 + 2ℓ + 2
η ak0

diverges to +∞. Since the term

∞
∑

ℓ=1

ℓ−1
∑

j=0

λ k0 η ak0

(k0 + 2j + 2) (k0 + 2j + 3) (k0 + 2j + 4)

is finite, it follows that
∑∞

ℓ=1
η ak0+2ℓ+2 diverges to +∞. This contradicts the

assumption of the convergence of

y(x) =
∞

∑

k=0

akx
k
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at both x = 1 and x = −1, because its convergence at both x = 1 and
x = −1 would imply that both

∞
∑

ℓ=0

a2ℓ

and
∞

∑

ℓ=0

a2ℓ+1

converge. This finishes the proof of the Claim.

From the Claim it follows that if the power series solution of (∗) is finite
at x = 1 and x = −1, then there cannot exist any k0 with ak0

6= 0 and
k0 (k0 + 1) > λ. This can happen only if λ = n (n + 1) for some integer
n ≥ 0. When λ = n (n + 1), we can choose a0 and a1 in the following way.
If n is even, we let m = n

2
and set

a0 =
(−1)m

2m

(2m)!

m!

and a1 = 0. If n is odd, we let m = n
2
− 1 and set a0 = 0 and

a1 =
(−1)m

2m

(2m + 2)!

(m + 1)!
.

This rather involved way of choosing a0 and a1 is to get the finite power
series (i.e., polynomial) has the unified expression

1

2n

m
∑

k=0

(−1)k

k!

(2n − 2k)!

(n − 2k)!(n − k)!
xn−2k,

which is called Legendre’s polynomial of degree n and is denoted by Pn(x).

Now that we have the value of λ = n(n+1) we can go back to the equation
(♯) and come up with one solution R(r) = rn which satisfies the equation (♯)
when λ = n(n + 1).

Rodrigues’ Formula. Legendre’s polynomial

Pn(x) =
1

2n

m
∑

k=0

(−1)k

k!

(2n − 2k)!

(n − 2k)!(n − k)!
xn−2k,
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of degree n can be put into a simpler form involved differentiation known as
Rodrigues’ formula in the following way. Again let n = 2m if n is even and
let n = 2m + 1 if n is odd. Since

dn

dxn
x2n−2k =

(2n − 2k)!

(n − 2k)!
xn−2k,

it follows that

Pn(x) =
1

2nn!

dn

dxn

m
∑

k=0

(−1)k (n!

k!(n − k)!
x2n−2k,

which we can rewrite as

(♭) Pn(x) =
1

2nn!

dn

dxn

(

x2 − 1
)2n−2k

.

The formula (♭) is Rodrigues’ formula.

Motivated by the above discussion of the removal of m in the differential
equation (♮) by the change of the dependent variable (‡) to transform it
to Legendre’s differential equation (∗), we define the associated Legendre

function

Pm
n (x) =

(1 − x2)
m

2

2nn!

dn+m (x2 − 1)
n

dxn+m

which satisfies the differential equation (♮)

Orthogonality and Norms of Associated Legendre Functions. For problems
involving Laplacian in spherical coordinates we need to consider for a fixed
integer m ≥ 0 the expansion of a function on [−1, 1] in terms of the as-
sociated Legendre functions Pm

n as n varies in the set of all nonnegative
integers. For that purpose we have to use the orthogonality of the family
{Pm

n }
0≤n<∞

for a fixed integer m ≥ 0. We now verify that for nonnegative
integers m, p, n with n > p the two functions Pm

p and Pm
n are orthogonal as

functions over [−1, 1] from the second-order differential equations (‡) which
they respectively satisfy.

(♮)n

(

1 − x2
)

(Pm
n )′′ − 2x (Pm

n )′ +

(

n(n + 1) −
m2

1 − x2

)

Pm
n = 0,

(♮)p

(

1 − x2
) (

Pm
p

)′′
− 2x

(

Pm
p

)′
+

(

p(p + 1) −
m2

1 − x2

)

Pm
p = 0.
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We multiply (♮)n by Pm
p and multiply (♮)p by Pm

n and take their differences
to get

(

(

1 − x2
)

(

Pm
p (Pm

n )′ − Pm
n

(

Pm
p

)′
))′

+ (n − p)(n − p + 1)Pm
p Pm

n = 0.

By integrating over [−1, 1] with respect to x, we obtain

∫

1

x=−1

Pm
p (x) Pm

n (x) dx = 0 for n > p.

We now compute the L2 norm of Pm
n (x) over [−1, 1] by first computing the

case of m = 1 by integration by parts and then the general case by induction
on m and by using differential equation (♮)n.

∫

1

x=−1

(Pn(x))2
dx =

∫

1

x=−1

(

1

2nn!

dn (x2 − 1)
n

dxn

)(

1

2nn!

dn (x2 − 1)
n

dxn

)

dx

= (−1)n

∫

1

x=−1

1

22n (n!)2

(

x2 − 1
)n d2n (x2 − 1)

n

dx2n
dx

= (−1)n

∫

1

x=−1

(2n)!

22n (n!)2

(

x2 − 1
)n

dx

= (−1)n

∫

1

x=−1

(2n)!

22n (n!)2
(x + 1)n (x − 1)n

dx

= (−1)n

∫

1

x=−1

(2n)!

22n (n!)2

−n

n + 1
(x + 1)n+1 (x − 1)n−1

dx

= (−1)n

∫

1

x=−1

(2n)!

22n (n!)2

−n

n + 1

−(n − 1)

n + 2
(x + 1)n+2 (x − 1)n−2

dx

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

= (−1)n

∫

1

x=−1

(2n)!

22n (n!)2

−n

n + 1

−(n − 1)

n + 2
· · ·

−1

2n
(x + 1)2n

dx

= (−1)n (2n)!

22n (n!)2

−n

n + 1

−(n − 1)

n + 2
· · ·

−1

2n

1

2n + 1
(x + 1)2n+1

∣

∣

∣

∣

x=1

x=−1

= (−1)n (2n)!

22n (n!)2

−n

n + 1

−(n − 1)

n + 2
· · ·

−1

2n

1

2n + 1
22n+1 =

2

2n + 1
.
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We conclude that the L2 norm of Pn(x) over [−1, 1] is
√

2

2n+1
. We now use

induction on the nonnegative integer m to compute the L2 norm of Pm
n (x)

over [−1, 1]. Since

d

dx
Pm

n (x) =
d

dx

(

(1 − x2)
m

2

2nn!

dn+m (x2 − 1)
n

dxn+m

)

=
m

2

(1 − x2)
m−2

2

2nn!
(−2x)

dn+m (x2 − 1)
n

dxn+m
+

(1 − x2)
m

2

2nn!

dn+m+1 (x2 − 1)
n

dxn+m+1
,

it follows that

(

1 − x2
)

1

2
d

dx
Pm

n (x) = −mx
(

1 − x2
)

−1

2 Pm
n (x) + Pm+1

n (x),

which can be rewritten as

Pm+1

n (x) =
(

1 − x2
)

1

2
d

dx
Pm

n (x) + mx
(

1 − x2
)

−1

2 Pm
n (x).

By using this formula we can compute the L2 norm of Pm+1
n (x) over [−1, 1]

by
∫

1

x=−1

(

Pm+1

n (x)
)2

dx

=

∫

1

x=−1

(

(

1 − x2
) (

(Pm
n )′ (x)

)2
+ 2mxPm

n (x) (Pm
n )′ (x) +

m2x2

1 − x2
(Pm

n (x))2

)

dx

= −

∫

1

x=−1

Pm
n (x)

((

1 − x2
)

(Pm
n )′ (x)

)′
dx

−m

∫

1

x=−1

(Pm
n (x))2

dx +

∫

1

x=−1

m2x2

1 − x2
(Pm

n (x))2
dx

where integration by parts has been applied to the first two terms on the
right-hand side. We now use

((

1 − x2
)

(Pm
n )′

)′
= −

(

n(n + 1) −
m2

1 − x2

)

Pm
n

from (♮)n to get

∫

1

x=−1

(

Pm+1

n (x)
)2

dx
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=

∫

1

x=−1

(

n(n + 1) −
m2

1 − x2

)

(Pm
n (x))2

dx

−m

∫

1

x=−1

(Pm
n (x))2

dx +

∫

1

x=−1

m2x2

1 − x2
(Pm

n (x))2
dx

=
(

n(n + 1) − m2 − m
)

∫

1

x=−1

(Pm
n (x))2

dx

= (n − m) (n + m + 1)

∫

1

x=−1

(Pm
n (x))2

dx.

By induction on m, we get
∫

1

x=−1

(Pm
n (x))2

dx =
(n + m)!

(n − m)!

∫

1

x=−1

(Pn(x))2
dx,

because
(n + m + 1)!

(n − m − 1)!
= (n − m) (n + m + 1)

(n + m)!

(n − m)!
.

Finally the L2 norm of Pm
n over [−1, 1] is given by

(
∫

1

x=−1

(Pm
n (x))2

dx

)

1

2

=

√

(n + m)!

(n − m)!

2

2n + 1
.

Final Solution of the Dirichlet Problem. Now for λ = n(n+1) and µ = −m2,
we have the solution R(r) = rn for (♯) with λ = n(n + 1) and the solutions
sin mθ and cos mθ for (&) when µ = −m2. The final step in the solution
of our Dirichlet problem is to take an R-linear combination of the special
product solutions

R(r)Θ(θ)Φ(ϕ) = rn Pm
n (cos ϕ)







1 if m = 0
cos mθ if m ∈ N

sin mθ if m ∈ N

to form

u(r, θ, ϕ) =
∞

∑

n=1

An,0

2
rn Pn (cos ϕ)+

∞
∑

n=1

rn Pm
n (cos ϕ) (An,m cos mθ + Bn,m sin mθ) ,

where the constants An,m, Bm,n are obtained as follows.

gm (ϕ) =
1

π

∫

2π

θ=0

u1 (θ, ϕ) cos mθ dθ,
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hm (ϕ) =
1

π

∫

2π

θ=0

u1 (θ, ϕ) sin mθ dθ,

Am,n =
(n − m)!

(n + m)!

∫ π

ϕ=0

gm (ϕ) Pm
n (cos ϕ) sin ϕdϕ,

Bm,n =
(n − m)!

(n + m)!

∫ π

ϕ=0

hm (ϕ) Pm
n (cos ϕ) sin ϕdϕ.

For the last two equations we have used the transformation x = cos ϕ with
dx = − sin ϕdϕ and the interval [−1, 1] of the integration for x corresponding
to the negative of the interval [0, π] of the integration for ϕ.


