1 Section 2.1

1.1 Problem 40
1.1.1 (a)

n is clearly onto V/W because for any v+ W € V/W, n(v) = v+ W. If v € N(n),
v+W=0+W=0v-0€ W ie vinW, and n(v) =W =0+ W for all v € W. So
n(n) = W. Finally n(av + bu) = av +bu+ W = a(v+ W) + b(u + W) (by 1.3 Ex.
31) and so n(av + bu) = an(v) + bn(u), i.e. n is linear.

1.1.2  (b)

Since R(n) = V/W and N(n) = W, the dimension theorem tells us dim V' = dim
Wt dim V/WW.

1.1.3 (c)

The proof of 1.6 ex. 35 uses the same method as the proof of the dimension theorem
(i.e. constructing a basis) whereas (b) just applies the result of the dimension theorem.

2 Section 2.4

2.1 Problem 24

2.1.1 (a)

From 1.3 Ex. 31 and 2.1 Ex. 40, v+ N(T) = v + N(T) = v—v € N(T) =
T(v—2")=0= T(v) =T(v') by linearity.

2.1.2  (b)

T(a(v+N(T))+blu+N(T))) =T(av+bu+ N(T)) = T(av+bu) = aT(v) +bT(u) =
aT(v+ N(T))+bT(u+ N(T)). The first equality follows from 1.3 Ex. 31.

2.1.3 (c)

N(T) = {v+ N(T)|T(v) = 0} . Since the only such v are v € N(T), N(T) =
{v+ N(T)|v e N(T)} = {0+ N(T)} which says exactly that T" is one-to-one. Since
T is onto Z, any vector in Z is of the form T'(v) and so T'(v + N(T)) = T(v) shows
T is onto. So T is onto and one-to-one which proves it is an isomorphism.

2.1.4 (d)
T(n) =T+ N(T))=T(v) =T =Tn.



(a)-(d) are collectively known as the First Isomorphism Theorem for vector spaces.
The Theorem is also true for many more general objects such as groups, rings, and
algebras.

3 Section 2.7

3.1 Problem 2
3.1.1 (a)

False. Only subspaces of the form given by Theorem 2.34 are the solution space
of such an equation. The subspace generated by {z?}, for example, is not such a
subspace.

3.1.2 (b)

False. For te® to be a solution, e must be also by 2.34. In this case (¢ = 0) the
latter is equal to 1, which is not in the solution set.

3.1.3 (c)
True. If p(D)x = 0 then by diffentiating p(D)z" = 0.

3.1.4 (d)

True. p(D)q(D)(x +y) = p(D)a(D)(z) + p(D)q(D)(y) = p(D)q(D)(x) + p(D)(0) =
p(D)q(D)(x). Since p(D)(x) = 0 we have by (c) above and taking linear combinations
that p(D)(¢(D)(z)) = 0.

3.1.5 (e)

False. Let p(t) =t —1 and ¢(t) =t — 2, x = ¢’ and y = €*. Then zy = €3 but since
3 is not a root of p(t)q(t) = (t — 1)(t — 2) it is not in the nullspace of p(D)q(D).

3.2 Problem 12

0= p(D)(V) = h(D)g(D)(V) = g(D)(V) C N(h(D)) and by definition R(g(Dy)) =
g(D)(V). From previous exercises we know n = dim V = dim N(p(D)) = dim
N(h(D))+ dim N(g(D)), and by the dimension theorem n = dim V' = dim N(g(D))+
dim R(g(D)) so dim R(g(D)) = dim N(h(D)). As suggested by the hint, this com-
pletes the proof.



3.3 Problem 13

3.3.1 (a)

Since (D — ¢I) is onto C'* for any complex ¢ (Lemma 1) we have by induction that
any differential operator p(D) is also. This proves that for some y, p(D)(y) = .
3.3.2 (b)

Certainly z 4 y is a solution for any y € V. Now assume there is some w such that
p(D)(w) = z. Then p(D)(w) = p(D)(z) for some fixed z in the solution set and so
p(D)(w) — p(D)(z) =0 = w — z = y where y is in the nullspace of the homogenous
equation, so for the general solution w we have w = z +y

3.4 Problem 18
3.4.1 (a)

It is easy to check (using the quadratic formula) that the auxiliary polynomial has
roots ¢; = —r/(2m) + sqrt((r/2m)* — (k/m)) and

ey = —r/(2m) — sqrt((r/2m)? — (k/m)) so the basis for the space of solutions is
give by: {e“t e} if ((r/2m)? — (k/m)) # 0 and {e®!, te®'} otherwise.

3.4.2 (b)

For simplicity we only check the case (r/2m)? = k/m (the other case is similar).
Assume y(t) = Ce®¥ + Dte“t. Then y(0) =0 = C =0 and y/(0) = vy = D = vg so
y(t) = vote "M,

4 Section 3.2

4.1 Problem 6

411 (d)
With respect to the standard bases for R® and P»(R), we have
1 1 1
()= |1 -1 1
1 0 0

The easiest way to find the inverse is to simultaneously row-reduce this and the
identity matrix; this gives, again with respect to the standard basis,

0 0 1
(TH=1|: -2 0

1 1

3 3 I

so in terms of polynomials, T~ (ag + 1@ + asa?® = (as, 3(a0 — a1), 3(ap+ a1) — as).

3



4.1.2 (e)

The method of computing the inverse is the same as in (d). The matrix of the inverse
is:

0 1 0
(T71) = —1% 0 %
5 L 3

4.2 Problem 17

If B is 3 x 1, we know that the image of B as a linear transformation F? — F! has
dimension at most 1, so by the dimension theorem the nullspace of B has dimension
at least 2. From Section 2.7 N(BC) = N(B) + N(C) if C is onto, in which case
N(BC) > 2. The only other possibility is C' = 0 and then N(BC) = 3 > 2 so we
know that the rank of BC' is at most 1 in any case. If A is 3 x 3 with columns
(A1, Ay, A3) and has rank 1, we know that the column rank of of A is 1 so the A; are
all multiples of a common vector v, say A; = c¢;v. Then if we consider (v) as a 3 x 1
matrix, we have A = (v)(cq, ¢z, ¢3).

5 Section 3.3

5.1 Problem 3

For each of these systems, write down the matrix of coefficients and then compute
the reduced row echelon form.

5.1.1 (d)

The row echelon form is:
10 0 2
01 -1 1
00 0 O

which corresponds to x; = 2, 19 — 3 = 1 so the solutions are of the form {(2,1,0)" +
s(0,1,1)!|s € F}.

5.1.2 (g)

The row echelon form is:
10 3 -1 -1
01 -1 1 1

which corresponds to x1 4+ 3x3 — x4 = —1, x9 — 23+ x4 = 1 so the solutions are of the
form {(—1,1,0,0)* + s(—3,1,1,0)" +r(1,—1,0,1)|s,r € F}.



5.2 Problem 10

Let Ax = b where A is the coefficient matrix of a system of m linear equations in n
unknowns, and A has rank m. So the columns of A span a subspace of dimension m;
since b € F™, this means the columns of A together with b form a linearly dependent
set (since there are at least m + 1 of these vectors) and so rank (A) = rank (A|b) =
the system is consistent by Theorem 3.11.



