1 Section 2.1

1.1 Problem 40

1.1.1 (a)

 η is clearly onto V/W because for any $v+W \in V/W$, $\eta(v)=v+W$. If $v \in N(\eta)$, $v+W=0+W \Rightarrow v-0 \in W$ i.e. vinW, and $\eta(v)=W=0+W$ for all $v \in W$. So $n(\eta)=W$. Finally $\eta(av+bu)=av+bu+W=a(v+W)+b(u+W)$ (by 1.3 Ex. 31) and so $\eta(av+bu)=a\eta(v)+b\eta(u)$, i.e. η is linear.

1.1.2 (b)

Since $R(\eta) = V/W$ and $N(\eta) = W$, the dimension theorem tells us dim $V = \dim W + \dim V/W$.

1.1.3 (c)

The proof of 1.6 ex. 35 uses the same method as the proof of the dimension theorem (i.e. constructing a basis) whereas (b) just applies the result of the dimension theorem.

2 Section 2.4

2.1 Problem 24

2.1.1 (a)

From 1.3 Ex. 31 and 2.1 Ex. 40, $v + N(T) = v' + N(T) \Rightarrow v - v' \in N(T) \Rightarrow T(v - v') = 0 \Rightarrow T(v) = T(v')$ by linearity.

2.1.2 (b)

 $\bar{T}(a(v+N(T))+b(u+N(T)))=\bar{T}(av+bu+N(T))=T(av+bu)=aT(v)+bT(u)=a\bar{T}(v+N(T))+b\bar{T}(u+N(T)).$ The first equality follows from 1.3 Ex. 31.

2.1.3 (c)

 $N(\bar{T}) = \{v + N(T) | T(v) = 0\}$. Since the only such v are $v \in N(T)$, $N(\bar{T}) = \{v + N(T) | v \in N(T)\} = \{0 + N(T)\}$ which says exactly that T is one-to-one. Since T is onto Z, any vector in Z is of the form T(v) and so $\bar{T}(v + N(T)) = T(v)$ shows \bar{T} is onto. So \bar{T} is onto and one-to-one which proves it is an isomorphism.

2.1.4 (d)

$$\bar{T}(\eta(v)) = \bar{T}(v + N(T)) = T(v) \Rightarrow T = \bar{T}\eta.$$

(a)-(d) are collectively known as the *First Isomorphism Theorem* for vector spaces. The Theorem is also true for many more general objects such as groups, rings, and algebras.

3 Section 2.7

3.1 Problem 2

3.1.1 (a)

False. Only subspaces of the form given by Theorem 2.34 are the solution space of such an equation. The subspace generated by $\{x^2\}$, for example, is not such a subspace.

3.1.2 (b)

False. For te^{ct} to be a solution, e^{ct} must be also by 2.34. In this case (c = 0) the latter is equal to 1, which is not in the solution set.

3.1.3 (c)

True. If p(D)x = 0 then by differniating p(D)x' = 0.

3.1.4 (d)

True. p(D)q(D)(x+y) = p(D)q(D)(x) + p(D)q(D)(y) = p(D)q(D)(x) + p(D)(0) = p(D)q(D)(x). Since p(D)(x) = 0 we have by (c) above and taking linear combinations that p(D)(q(D)(x)) = 0.

3.1.5 (e)

False. Let p(t) = t - 1 and q(t) = t - 2, $x = e^t$ and $y = e^{2t}$. Then $xy = e^{3t}$ but since 3 is not a root of p(t)q(t) = (t-1)(t-2) it is not in the nullspace of p(D)q(D).

3.2 Problem 12

 $0 = p(D)(V) = h(D)g(D)(V) \Rightarrow g(D)(V) \subset N(h(D))$ and by definition $R(g(D_V)) = g(D)(V)$. From previous exercises we know $n = \dim V = \dim N(p(D)) = \dim N(h(D)) + \dim N(g(D))$, and by the dimension theorem $n = \dim V = \dim N(g(D)) + \dim R(g(D))$ so dim $R(g(D)) = \dim N(h(D))$. As suggested by the hint, this completes the proof.

3.3 Problem 13

3.3.1 (a)

Since (D-cI) is onto C^{∞} for any complex c (Lemma 1) we have by induction that any differential operator p(D) is also. This proves that for some y, p(D)(y) = x.

3.3.2 (b)

Certainly z + y is a solution for any $y \in V$. Now assume there is some w such that p(D)(w) = x. Then p(D)(w) = p(D)(z) for some fixed z in the solution set and so $p(D)(w) - p(D)(z) = 0 \Rightarrow w - z = y$ where y is in the nullspace of the homogenous equation, so for the general solution w we have w = z + y

3.4 Problem 18

3.4.1 (a)

It is easy to check (using the quadratic formula) that the auxiliary polynomial has roots $c_1 = -r/(2m) + sqrt((r/2m)^2 - (k/m))$ and

 $c_2 = -r/(2m) - sqrt((r/2m)^2 - (k/m))$ so the basis for the space of solutions is give by: $\{e^{c_1t}, e^{c_2t}\}$ if $((r/2m)^2 - (k/m)) \neq 0$ and $\{e^{c_1t}, te^{c_1t}\}$ otherwise.

3.4.2 (b)

For simplicity we only check the case $(r/2m)^2 = k/m$ (the other case is similar). Assume $y(t) = Ce^{c_1y} + Dte^{c_1t}$. Then $y(0) = 0 \Rightarrow C = 0$ and $y'(0) = v_0 \Rightarrow D = v_0$ so $y(t) = v_0 t e^{-rt/2m}$.

4 Section 3.2

4.1 Problem 6

4.1.1 (d)

With respect to the standard bases for \mathbb{R}^3 and $P_2(\mathbb{R})$, we have

$$(T) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

The easiest way to find the inverse is to simultaneously row-reduce this and the identity matrix; this gives, again with respect to the standard basis,

$$(T^{-1}) = \begin{bmatrix} 0 & 0 & 1\\ \frac{1}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & -1 \end{bmatrix}$$

so in terms of polynomials, $T^{-1}(a_0 + a_1x + a_2x^2) = (a_2, \frac{1}{2}(a_0 - a_1), \frac{1}{2}(a_0 + a_1) - a_2)$.

4.1.2 (e)

The method of computing the inverse is the same as in (d). The matrix of the inverse is:

$$(T^{-1}) = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix}$$

4.2 Problem 17

If B is 3 x 1, we know that the image of B as a linear transformation $F^3 \to F^1$ has dimension at most 1, so by the dimension theorem the nullspace of B has dimension at least 2. From Section 2.7 N(BC) = N(B) + N(C) if C is onto, in which case $N(BC) \ge 2$. The only other possibility is C = 0 and then $N(BC) = 3 \ge 2$ so we know that the rank of BC is at most 1 in any case. If A is 3 x 3 with columns (A_1, A_2, A_3) and has rank 1, we know that the column rank of A is 1 so the A_i are all multiples of a common vector v, say $A_i = c_i v$. Then if we consider (v) as a 3 x 1 matrix, we have $A = (v)(c_1, c_2, c_3)$.

5 Section 3.3

5.1 Problem 3

For each of these systems, write down the matrix of coefficients and then compute the reduced row echelon form.

5.1.1 (d)

The row echelon form is:

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

which corresponds to $x_1 = 2$, $x_2 - x_3 = 1$ so the solutions are of the form $\{(2, 1, 0)^t + s(0, 1, 1)^t | s \in F\}$.

5.1.2 (g)

The row echelon form is:

$$\begin{bmatrix} 1 & 0 & 3 & -1 & -1 \\ 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

which corresponds to $x_1 + 3x_3 - x_4 = -1$, $x_2 - x_3 + x_4 = 1$ so the solutions are of the form $\{(-1, 1, 0, 0)^t + s(-3, 1, 1, 0)^t + r(1, -1, 0, 1) | s, r \in F\}$.

4

5.2 Problem 10

Let Ax = b where A is the coefficient matrix of a system of m linear equations in n unknowns, and A has rank m. So the columns of A span a subspace of dimension m; since $b \in F^m$, this means the columns of A together with b form a linearly dependent set (since there are at least m+1 of these vectors) and so rank $(A) = \text{rank } (A|b) \Rightarrow$ the system is consistent by Theorem 3.11.