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New definition of a tableau.

Young diagrams are as before, for example

L]
L]

OO 0O 0O
O OO0
OO O

But now the word tablean is a choice of filling the diagram
with positive integers where repetition is allowed, and the
numbers are non-decreasing from left to richt along rows.
and strictly decreasing along columns. For example

1 2 2 3
2 3 5 5
4 4 6
50

i1s a tablean associated to the above diagram.



The word of a tableau.

1 2 2 3
2 3 5 5
4 4 6
5 06

The word
associated to a tableau is obtained by reading the nmmbers
ftrom lett to right startineg with the bottom row. So the

word of the above tablean is
H644623551223.

We can recover the tablean tfrom its word by noting that
the rows must end just before a strict decrease in the
entry:

56(446|2355(1223
cives the row breaks. But not every word comes from a
tablean: The sizes of the rows must be non-decreasing,
and when stacked on top of one another the entries must
be strictly decreasing from top down.



Insertion and bumping.

The Schensted bumping algorithm takes a tableau T
and a positive integer n and produces a tableau whose
diagram has one more box. It works as follows: If n is as
least as large as the largest entrv in the top row, simmply
add n in a new box at the right of the top row. If not,
find the leftmost entry in the top row which is strictly
larger than n, replace that entrv m with n. and repeat
the process with m on the second row and continue. For
example, inserting 2 into the above tablean leads to the
following steps:

1 2 2 — 9 1 2 2 9
23 5 5 | 2 3 5 5 «— 3
4 4 G 4 46
5 6 5 6
1 2 2 9 1 2 2 9
L 2335 L 23305
4 4 6 — 5 4 4 5
56 56 6



Again

The final result of msertimg 2 mto the above tablean 1s to
effect the transformation

1 2 2 3 1 2 2 2
2 355 2335
1 4 6 4 45
5 6 5 6 6
Repeat:
1 2 2 3 — 2 1 2 2 2
2 3 5 5 2 35 5 « 3
1 4 6 4406
5 6 5 6
1 2 2 2 1 2 2 2
2 3 3 5 2 3 35
T4 406 — 5 7 4 45
5 6 5 6 6



Knuth moves.

A Knuth move of type A on a three letter word yzx 1s to
replace yzx by yrz it * < y < z. Symbolically, we can
remember this as

A: oY, —e, O

2 L]

A Knuth move of type B on a three letter word sends
rzy — zary i @ <y < z. Symbolically we can remember
this as

B: e — O _e.

o
We can achieve the bumping algorithm more slowly 1f we
place the letter n to the right of the word of 1" and then
successively apply moves of type A and B. whichever 1s
appropriate, to the three letter subwords starting at the

right.



— »

A oY

2

replace yzox by yrz it # < y < z.

B: _,Ce —

L]

Q‘.

O

L]

Example

H6446235512232

L

rzy — zay it v <y < z.
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H6446235512522
H6446255513222
H6446235531222
H6446255351222
H6446253351222
H6446523351222
H6464523351222
56644523351222.
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Why Knuth moves give slow bumping.
A oY

- O .'\_:| .

replace yzr by yrz if ©+ < y < z. rzy — zoey it r <y < z.

O, B Ce — O _e.

o o 0

lTo see that this slow bumping always does achieve the
bumping consider the top row (with x adjoined) in the
form w; ... u,x'vy .. v e where 2" > x and w, < x. Then
vg = vg—1 > x and so the Knuth operation A moves x
to the left of v, and this continues (with A) until the
confieuration uq . .. fu.P.r".;_r'-.!.-*l ... vy 1sreached. Then u, <z
and =’ > x so operation B moves z’ to the left of «, and we
can apply B to the configuration w,_;z'u, to move the z’
to the left of u,_;. This continues until " has been moved
to the left of the entire row, and so has been bumped to

the second row, etc.



Elementary Knuth
. -e.O MOVES 5: % —

*=Y

An elementary Knuth transformation on a word ap-
plies one of A or B or their inverses to three successive
letters of a word. So an elementary Knuth equivalence
changes the order of two letters on one side of a letter v
if one 1s bigeger and the other 1s smaller than v.



Knuth equivalence.

1T'wo words are Knuth equivalent if they can be ob-
talned from one another bv a succession of elementary
Knuth transformations. What we have shown is that

Proposition 4.1 If w(1') is the word of the tableau T,
then the word w(1') - x is Knuth equivalent to the word of
the tableau obtained from 1" by inserting the letter x and
using the Shensted bumping algorithm.



Words and tableaux.

A word consisting of one letter 1s obviously the word of
the tableau with one box. If w = xy---x, 15 any word,
then the proposition (applied inductively) implies that w
is Knuth equivalent to the word of a tableau. We have
thus proved:

Proposition 4.2 Any word is Knuth equivalent to the
word of a tableau.

What is hard to prove is

Theorem 4.1 FEuvery wordis Knuth equivalent to the word
of a unique tableau.



Web site.

4.1 Web site for listing of all words equiv-
alent to a given word,

http://www.mathe2.uni-bayreuth.de/axel /all_plactic_word.html
You type in the word in the form [a.b.c.d...] and then

hit [berechnen] and you will get the list of all words Knuth
equivalent to the word vou typed.



Increasing sequences in a word.

If w = ryry...2, 1s a word, an increasing sequence
of w 18 a sequence of integers 7; < --- < i, such that

sequence. For example, if

ri, < --- < a; and then p 1s called the length of the

w = 134234122332

then
134234122332

extracts an increasing sequence of length six as does
134234122332.

There are no increasing sequences of longer length. We
write L(w.1) = 6. So in general L(w,1) denotes the
longest leneth of an increasing sequence in the word.



L(w,k).

For any integer k, let L(w. k) denote the largest integer
which can be 1c~e1]1.zc~(l as the sum of the lengths of & dis-
joint increasing sequences. For example, the above word
has L(w.2) =9 because we can extract the two increasing
sequences

134234122332

of lengths six and three and can not do anv better. We
also have L(w.3) = 12 because we have

131237122332

disjoint increasing sequences of lengths 5.4, and 3. We can
not do better, and there is no collection of disjoint increas-
g sequences of lengths 6.3, and 3, for example. Since
there are 12 letters in the word, we must have L(w, k) = 12
for all £ > 3.



The word constructed by the
bumping algorithm.

w = 134234122332
. . 1
I 2 4 1 2 3 1 2 3 4
=1 134 3 3 4 3 4 , 1
3
1 1 2 4 1 1 2 2 11 2 2 3 1 1 2
— 2 3 — 2 3 4 — 2 3 4 — 2 3 4
3 4 3 4 3 4 3 4
1 2 2 2 3
— 2 3 3
3 4 4

The word of this tablean 15 344235112223 and we can
conveniently read off the mcreasing sequences from the
tableau starting at the top.



In fact it 1s clear that if z 1s the word of a tableau of
shape A then L(z, k) is the sum of the number of boxes in
the first £ rows of A\. Suppose that we could prove that
w = w' implies that L(w. k) = L(w'. k). Then if w = '
are both words of a tableau, we would know at least that
the shape of these tableaux are the same.

So as a first step we want
to prove that

w = w' implies that L(w. k) = L(w'. k).



Proof. We need onlyv check this for the elementary
Knuth transformations. So let w and w’ be the left and
right hand sides of

u-yrz-v=u-yzr-v r<y<z A: O e

and
u-rzy-v=u-zry-v r<y<z. B: . Oe —

Any disjoint collection of k increasing sequences for w’ is
a. disjoint collection of & Increasing sequences for w. So
L{w. k) = L(w'. k). We must prove the reverse inequality.
Any increasing sequence for w will be an increasing se-
quence for w’ unless it contains both x and z. So suppose
that one of the sequences for w 1s of the form a-xz-b. It
no other sequence we are using contains vy, then a - yz - b
is an increasing sequence for w’ in the first case

and a - xy - b 1s an Increasing sequence i the second case

So we get the same sum of lengths.



’

wW W
U-Yrz -v=u-Yyzr-v <Yy = z

U-rzy-v=u-zry-v xr<iy<z.

one of the sequences for w 1s of the form a-xz - b.

some other sequence we are using for w is of the

form ¢ -y -d. In the first case replace the two sequences
bv c-yz-band a-x-d. In the second case replace the two
sequences used m w by a-zy-dand ¢-x-b. QED



Removing the largest letter.

We now want to complete the proof that each Knuth
equivalence class contains exactly one word of a tableau.
We already know that the shape of this word 1s deter-
mined. In a tableau 1" for which n 1s the largest integer,
an n must occur at a corner, lLe. at a position which
1s at the rieht hand end of its row and the bottom of its
column. In fact, suppose that n 1s the largest integer in
the word w, and we let w, denote the word obtained from
w by deleting the rightmost n which occurs in w. Let A
be the shape of the tableau associated with w. and let Ag
be the shape of the tableau associated to w.. It w = w(1")
is the word of a tableau, then w, = w(1,) is the word of
the tableau 7, obtained from 7' by removing n from the
(end of the) highest row in which it appears. Suppose we
could prove the following lemma:

Lemma 5.2 If w and w' are any words, then w = w' =



Proof of theorem assuming the lemmma. We can
now prove the theorem, which asserts that every Knuth
equivalence class contains a unique word w(7") that is the
word of a tableau by mmduction on the length, 1.e number
of letters in the word. Clearly every word of length one 1s
the word of a tableau and no two distinct words of length
one are equivalent. So the theorem 1s true for words of
length one. Suppose we know the theorem for all words
of length < N — 1. If w = w(1") is of length N. and n is
the largest letter occurring in w, then the shape A = A\(1")
is determined, and so is Ae = A(1,) = A(ws) which is
obtained tfrom A bv removal of a corner. So we know that
this corner in A must contain an n. If w = " and w’ is the
word of a tableau. then since w, = w! the shapes of the
tableaux associated to w’ and w! are the same as those
associated to w and w, and this same corner in 7" and 7"
must contain an n. But now 77 must be identical with 7%,
since w, = w’ and these words have length N — 1. This
implies that 7' ="1".




Proof of the lemma.

Lemma 5.2 If w and w' are any words, then w = w' =

- !
W, = w,.

Proof of the lemma. 'T'o prove this it is enough to prove
this for the elementary equivalences

U-yYyrz -v=u-yzr-v r<y<z

and
U-Trzy-v=u-zry-v I <iy<z.

If the n that 1s removed 1s not one of the xyz the result
follows by induction. If the n that is removed s one of the
ryz then it must be the z, and then the resulting words
are the same. QED



The plactic monoid.

An assoclative monoid 1s a set with a binary operation
(called multiplication) for which the associative law holds.
For example, the collection of all words on a given alpha-
bet 1s a monoid 1n which multiplication 1s juxtaposition.
It 1s called the free associative monoid on the letters of the
oiven alphabet. If the letters are {1.....m} this monoid
is denoted by Fm] or simply by F' it m is understood.
the empty word () is a left and right identity on F'. If two
words are Knuth equivalent, so 1s their product. Hence
the multiplication on F' descends to a multiplication on
the set M of Knuth equivalence classes of words. 'This
makes M into an associative monoild with left and right
1dentity, which 1s called the plactic monoid.



The bumping algorithm for multiplication.
Each element of M corresponds to a unique tableau by

Theorem 4.1. So the product of two elements of M can
be thought of as a multiplication on tableaux. DBy the
assoclative law, the product 1" - U of two tableau can be
computed as follows: Start with the tableau 7. and insert
the leftmost entrv of the bottom row of U into 7'. Then
mmsert the next entry, etec. In other words, successively
insert the letters of w(U) into 1" reading from left to right.
For example.

| 2 2 [ 2 2 9 E%
) 355 13 2335 Lo
446 *2 T 44 5 '”"13
5 6 5 6 6 :
e}
1 1 2 2 3
0o 9 3 5
— 3 4 5
16 6
5

WA

oy O

by |

e}



The bumping algorithm for multiplication.

1 2 2 3 1 2 2 2 Lol2 2
23 55 13 23 35 ng”
146 *2 T 44 5 el3=3 45 3
5 6 5 6 6 o0
e}
1 1 2 2 3
2 2 3 5
_ 3 4 5
16 6
5

If v 1s the shape of this product tableau. then » contains
A, the shape of 1" as a subdiagram. This 1s obviously a
oeneral fact.



Multiplication by a row

We want to examine some properties of this multiplication
in the special case where U 1s row or where U 1s a column.
Consider the multiplication

| 11 2 2 11 2 2

é?if 2 2 3 5 2 2 3 5

L el3=3 4 5 e3=3 4 5

5 66 166 16 6
) 5

Let v be the shape of this product tableaun. and A, the
shape of 1" Let v/ A denote the skew diagram obtained
by removing the boxes of A from p. Notice that no two
boxes in v/A lie in the same column. (There is a box of
v /A in the first and fifth column.) This is also a general
fact:



Multiplication by a row, 2.

Proposition 6.1 If A\ is the shape of 1" and v s the shape
of T'e U then no two boxes in the skew diagram v/ e in
the same column.

In order to prove this, 1t 1s convenlent to introduce the
notion of the bumping route of an msertion. Inserting
the number x into a tableau 71" determines a collection R
of boxes consisting of the positions where an element was
bumped, together with the box where the last bumped
celement lands up. In our example at the beginning. the
bumping route consists of the boxes containing bold face
numbers below:

1 2 2 2
2 3 3 5
4 4 5
h 6 6



2

3

The bumping route.

1 2 2

o I B

N2 O

= N ) = O
A B N e — ™ =
o B L Tan
f o
ﬁ o B ~n [ T N
L
_\ — o =D
ot I T
o B A N
o N = O
=1 O — ™ = D
- LD



The bumping routes of multiplication by a row.

Consider the multiplication

o ‘ 1 1 2 2 1 1 2 2
é??f 2 2 3 5 2 2 3 5
__,1*_4*5' el 3= 3 4 5 3= 3 4 5
4 6 6 1 6 6
h 6 0 - -

If we draw the bumping route of the first insertion in the
above multiplication we get

I 1 2 2
2 2 3 5
3 4 5
4 6 6
5

which clearly lies to the left of the next insertion which
consists of simply adding a 3 to the first row.



Lemma 6.1 Insert @ into the tableau 1 and then insert

x' into the resulting tableaw.

o [fu < then the bumping route R of the x-insertion
lies strictly to the left of the bumping route R' of
the second imsertion, and the new box B of the first
imsertion lies strictly left and weakly below the new
box B' of the second insertion.

o [fux > then R is weakly left of R and B’ is weakly
left and strictly below B.

Proof. Suppose @ < 2’. If 2 causes no bumping on the
top row. then neither does 2" which is placed immediately
to the right of # 1in the final diagram. If 2 bumps a number
y from the first row. then =’ does not bump x from the first
row since x < x’. So if #' bumps anything from the first
row, it must bump a number ¢ from a box strictly to the
right of the position of the y bumped by x, and so y < v/,



Proof. Suppose o < z’. If x causes no bumping on the
top row. then neither does 2" which is placed immediately
to the right of x in the final diagram. If 2 bumps a number
y from the first row. then =’ does not bump x from the first
row since x < x’. So if ' bumps anything from the first
row, it must bump a number ¢’ from a box strictly to the
right of the position of the y bumped by x, and so y < v/,
[terating this argument shows that R lies strictly to the
left of R'. Also. at each stage the insertion of a z into a
row (for the first insertion) is followed by and insertion
of a z/ > z (or no insertion at all) into this row. So R
can not terminate in a row strictly above the termination
of R'. It R’ stops first then IR keeps moving down and
weakly to the left so B 1s strictlv to the left and weakly
below B’.



Suppose that = > z'. If » does not bump an element
from the top row then ' certainly does, and the bumped
element lies weakly to the left of the position occupied by
r. so R lies weakly to the left and strictly below R. If =
does bump an element y from the first row, then y > =
and the element 4" bumped by 2’ is < x so I’ is weakly
to the left of iR on the top row and the process continues.
This completes the proot of the lemma. The proposition
follows from the first case of the lemma. since each new
box inserted lies strictly to the right of the preceding one.

Proposition 6.1 If A is the shape of 1" and v is the shape
of T'e U then no two boxes in the skew diagram v/ lie in
the same column.



1'he proposition has a converse. Belore stating 1t, we
observe that the Shensted bumping algorithm has an -
verse in the following sense. Suppose we start with a
tablean and with a given corner of its diagram. and are
told that we obtained this entry by a bumping. For ex-
ample, suppose we are given the tableau

2 2

O e D =

S o= L2

Sy O Q2
T

together with the miformation that the "new” box 1s the
corner occupled by the 6. Then we can retrace the bump-
ing route by doing reverse bumping: The 6 bumps the
5 1n the third row which bumps the rightmost 3 in the
second row which bumps rightmost 2 1n the first row out
of the diagram.



In general, 1if z denotes the entry in the

"new’ box. 1t looks for the entry in the row above which
1s strictly less than z and which 1s furthest to the right,
and bumps this entry out; the process continues until an
element 1s bumped out of the first row.

T'his shows that if we are given a tableau X with shape
v, a subdiagram A such that »/A has all its boxes in
different columns, then we can find a unique tableau I
and a unique tableaun U whose shape 1s a row such that
X=TeU.



Multilplication by a
column.

We can use the second half of the lemma to characterize
the shape of multiplication by a column. Agaimn we use
the notation A for the shape of 7" and v for the shape of
1 e U:

Proposition 6.2 If the shape of U is a column then no
two boxes of v/ A lie in the same row. Conversely, if X
15 a tableaw of shape v and X\ is a subdiagram of v such
that no two boxes of v/\ lie in the same row, then there
s a tableau I" os shape A and a tableauw U whose shape is
a column such that X =1 e U,



The plactic monoia.

Given anyv monoid we can form an algebra by consider-
ing the set of linear combinations of the elements of the
monoid with coeflicients in a fixed ring (say the integers
or the complex numbers). Multiplication of two basis ele-
ments 1s determined by the monoid structure which then
extends by bilinearity to all linear combinations. We will
denote the algebra formed from M by R (or l:-v Ry, when
we need to specify the alphabet, or by Ry, 1(Z Z) if we also
need to specity that the ring of coeflicients is Z).



The Pieri formulas.

For a Young diagram A, we let S € R denote the sum
over all tableaux of shape A. Of great interest will be a
formula for the product in R of two elements of this type,
L.e for the product Sy e 5,. This will require some work.
But the two preceding propositions allow us to compute
this product when i 1s a row or a column:



Let (p) denote the Young diagram with one row and p

columns. Then
Sxe S =Y S, (1)

i’

where the sum is over all » which can be obtained from A
by adding p boxes with no two boxes in the same column.
Indeed, given a tableau of shape A and a row U then we get
a term occurring exactly once in one of the summands on
the right, and given any tableau X occurring a summand
in one of the S, in the sum on the right, it can be written
uniquely as X = 1" e U where 1" 1s a tableau of shape A
and U is a tableau whose shape is (p).

If (17) denotes the tableau consisting of one column
and p rows. then a similar argument (using Proposition

6.2 shows that
Sy S(ip) = EZQM (2)

where the sum is over all » which can be obtained from A
by adding p boxes with no two boxes in the same row.



