## Odds and ends

## Math 139

**References:** "Knots and Links" by Peter Cromwell, "The Knot Book" by Colin Adams, and "A Survey of Knot Theory" by Akio Kawauchi.

## Brunnian Links are non-trivial.

In order to prove this we must detour and define tangle sum and non-split tangles. In these notes I'll denote a tangle by (B, t) where t is the tangle in the three ball B.

**Definition.** A tangle sum of (A, s) and (B, t) is the link  $(A, s) \cup_{\phi} (B, t)$  obtained by gluing them together via a homeomorphism  $\phi : \partial(B, t) \to \partial(A, s)$ .

**Exercise and Remark:** 1) Find an example that shows the link type of a tangle sum is not uniquely determined by the tangles. 2) Construct a pair of distinct knots from the same pair of tangles by taking distinct tangle sums.

**Definition.** A tangle (B, t) is non-split if any proper disk D in B does not split t in B.

**Remark:** A trivial tangle is split, but a split tangle is not necessarily trivial. A split 2-tangle made of unknotted arcs is trivial. A non-split 2-tangle made of unknotted arcs is nontrivial.

**Theorem 1.** Any link obtained by any tangle sum of two non-split tangles is non-split.

Proof. Let T denote the common sphere of the tangle sum and let S denote the splitting sphere. Suppose that  $T \cap S = \emptyset$ , then  $S \subset T$  or  $S \subset (S^3 \setminus T)$ . This means one tangle is split, a contradiction. Thus  $T \cap S \neq \emptyset$  and is a set of nested loops, denote one by  $\lambda$ . Now  $\lambda$  bounds a disk on S and by construction  $S \cap t = \emptyset$ . Suppose  $\lambda$  bounds a disk  $\Delta$  on T. If  $t \cap \Delta = \emptyset$ , then use surgery to simplify these intersections. We are left with a sphere T such that  $t \cap \Delta \neq \emptyset$ . There must be two points of intersection (as S is a splitting sphere). This means there is a strand of t in  $T \cap S$ , hence  $\Delta$  is a splitting disk for (T,t), a contradiction.  $\Box$ 

**Exercise and Remark:** This theorem and the previous remarks should give you the tools you need to prove the Brunnian links are non-trivial. Many of you have worked out how to construct Brunnian links and how each component relates to the others. Start with a 2-tangle that you can show is non-split. Made a tangle sum of this 2-tangle with itself to give a non-split 2 component link. Use induction. Further hints available on request.

## Rational knots are prime.

You now have all the pieces needed to prove this result. I'll indicate some of the steps of the proof below.

*Proof.* Let K be the rational knot and R be the common sphere of the rational knot (so on each side of R there are trivial 2-tangles). Assume that the rational knot is not prime and let S be the factorizing sphere:  $K \cap S$  in two points.

- (1) Assume that  $R \cap S = \emptyset$  and derive a contradiction.
- (2) Hence  $R \cap S \neq \emptyset$ , it is a set of nested loops. The first step is to remove the simplest intersections by surgery. Let  $\lambda$  be an innermost loop on S which bounds a disk  $\Delta$  and let  $\lambda$  bound a disk  $\Delta'$  on R. Assume  $K \cap \Delta = \emptyset$  and  $\Delta' \cap K = \emptyset$ ...
- (3) The rest of the proof is a matter of considering the intersection of K with  $\Delta$  and  $\Delta'$  and deriving contradictions. The contradictions might involve the non-triviality of K or its factors, or the triviality of the 2-tangles. For example, what happens when  $K \cap \Delta = \emptyset$  but  $\Delta' \cap K$  is 1 point or is 2 points? Now, keep going. You might find that there are sub-cases within these cases. Further hints available on request.