February 21, 2005

- 1. Perform integration by parts with $u = x, dv = \sec^2 x dx$. The answer is $x \tan x + \ln |\cos x| + C$
- 2. Perform the substitution u = 2x + 1. The answer is $2x + \ln |2x + 1| + C$
- 3. Perform the substitution $u = x^2$. The answer is $\frac{7}{2}e^{x^2} + C$
- 4. Use the fact that $x^2 + 6x + 9 = (x+3)^2$. The answer is $-\frac{1}{x+3} + C$
- 5. Since $\sin(x^3)$ is an odd function and the interval is symmetric around 0, the integral is zero. (Note that we would not want to find an antiderivative for this function.) 0
- 6. Perform the substitution u = 3x + 4. The answer is $\frac{2}{9}(31\sqrt{31} 7\sqrt{7})$
- 7. Integrate by parts with $u = \tan^{-1} x$ and dv = x. Complete the integration by using long division. The answer is $-\frac{x}{2} + \frac{\tan^{-1} x}{2} + \frac{1}{2}x^2 \tan^{-1} x + C$.
- 8. Integrate by parts twice and note that we obtain the original integrand. The answer is $\frac{1}{2}e^x(\sin x \cos x) + C$
- 9. Integrate by parts with $u = \ln x, dv = xdx$. The answer is $\frac{1}{2}x^2 \ln x \frac{1}{4}x^2 + C$
- 10. Use the trigonometric identity $\sin^2 \theta = \frac{1}{2}(1 \cos 2\theta)$. The answer is $\frac{1}{2}x - \frac{1}{28}\sin(14x) + C$
- 11. Perform the substitution $u = x^4 + x^3 + x^2 + x + 1$. The answer is $\ln |x^4 + x^3 + x^2 + x + 1| + C$
- 12. Use partial fractions. The answer is $\frac{9}{2} \ln |x 1| 15 \ln |x 2| + \frac{21}{2} \ln |x 3| + C$
- 13. $\frac{1}{2}\sin(x^2) + C$. Substitute for x^2 .
- 14. $x^2 \sin x + 2x \cos x 2 \sin x + C$. Integrate by parts twice.
- 15. $\frac{1}{2} \ln |x-1| + \frac{3}{2} ln |5+x| + C$. Integrate by parts after factorizing the denominator.
- 16. $\frac{1}{2}x + \frac{1}{4}\sin(2x) + C$. Use trig identity $\cos^2 x = \frac{1}{2}[1 + \cos(2x)]$

- 17. $\frac{1}{2}x^2\sin(x^2) + \frac{1}{2}\cos(x^2) + C$. Substitute for x^2 , and then use parts or just use parts with $u = x^2$ and $dv = x\cos(x^2)$.
- 18. $\sin(x) \frac{1}{3}\sin^3(x) + C$. Use trig identity $\cos^2 x = 1 \sin^2 x$ by rewriting integrand as $\cos^2(x)\cos(x)$. Substitute for $\sin^2 x$.
- 19. 1. Integrate by parts.
- 20. $x(\ln x)^2 2x \ln x + 2x + C$. Integrate by parts twice.
- 21. $\frac{1}{3}(\ln x)^3 + C$. Substitute for $\ln x$
- 22. $\ln 3$. Substitute $u = \ln x$.
- 23. $\frac{1}{2}(x^2+1)\ln(x^2+1) \frac{1}{2}(x^2+1) + C$. Substitute for x^2 and then do by parts. Your answer may differ by a constant, of course.
- 24. $x 2 \arctan x + C$. Realize that the fraction equals $1 \frac{2}{x^2 + 1}$. You can also use long division to do this.
- 25. $x \ln |x+1| + \ln |x-1| + C$. Note $1 + \frac{2}{(x+1)(x-1)} = 1 \frac{1}{x+1} + \frac{1}{x-1}$. Note that long division could be used here as well.
- 26. $\frac{1}{2} \tan^{-1}(x^2) + C$.
- 27. $\sqrt{x^2 + 1} + C$. Substitute $u = x^2 + 1$.
- 28. $\frac{1}{4} \ln |e^x 2| \frac{1}{4} \ln |e^x + 2| + C$. Substitute for e^x followed by partial fractions
- 29. $\frac{1}{2} \ln |e^{2x} 4| + C$. Substitute for e^{2x} .
- 30. $2\sqrt{7} 2\sqrt{5}$. Substitute for $e^x + 4$.
- 31. $2\ln|x-3| \ln|x+1| + C$. Partial fractions.
- 32. $x + 2 \tan^{-1} x + C$. Realize that the fraction equals $1 + \frac{2}{x^2 + 1}$.
- 33. $\frac{1}{3}e^{x^3} + C$. Substitute for x^3 .
- 34. $-\frac{3}{2}\ln|\cos 2x| + C$. Write as $\frac{\sin x}{\cos x}$ and then substitute for $\cos x$.
- 35. $e^{\tan x} + C$. Substitute for $\tan x$.
- 36. $-\frac{\cos(2\sin x)}{2} + C$. Substitute for $\sin x$.

- 37. $\frac{\ln(1+x)}{(1+x)} + \frac{1}{(1+x)} + C$. Let u = x + 1 and then integrate by parts.
- 38. $-\frac{2}{1+x} + C$. Factor the denominator and look at the problem.
- 39. $\frac{1}{2} \ln \frac{x}{x+2} + C$. Partial Fractions.
- 40. $\frac{3}{4} \ln |x 1| \frac{1}{2(x-1)} + \frac{1}{4} \ln |x + 1| + C$. Partial fractions.
- 41. $3x \sin x + 3 \cos x + C$. Integrate by parts.
- 42. $\frac{1}{3}(x^2+2x)^{\frac{3}{2}}+C$. Write as $(x+1)\sqrt{x^2+2x}$. Substitute for x^2+2x .
- 43. $1 \cos(1)$. Substitute for $\ln x$.
- 44. $\frac{x}{2}(\sin(\ln(x)) \cos(\ln(x))) + C$. Integrate by parts twice, look to switch terms over.
- 45. $\frac{-1}{3x} \frac{\arctan(x/3)}{9}$. Partial Fractions.
- 46. $\frac{x^2}{2} \frac{1}{2}\ln(x^2+1) + C$. Write fraction as $\frac{x(x^2+1)-x}{x^2+1}$. Split the fraction and split the integral across the minus sign. Substitute for x^2 on the right side. Another way would to be approach via long division.
- 47. $\ln |x| \frac{1}{2} \ln |x^2 + 1| + C$. Partial Fractions.
- 48. $\frac{1}{3} \ln \left| \frac{1 \cos(x)}{4 \cos(x)} \right| + C.$ Substitute for $\cos x$. Partial fractions.
- 49. $2e^{\sqrt{x}}$. Substitute for \sqrt{x} .
- 50. $2e^{-x}(-x-1)$. Integrate by parts with u = 2x and $dv = e^{-x}$.
- 51. $\frac{1}{2}\ln(x^2+1) + \tan^{-1}(x)$. Write the fraction as $\frac{x}{x^2+1} + \frac{1}{x^2+1}$.
- 52. $e^{(x+1)^2}$. Write as $(2x+2)e^{(x+1)^2}$. Substitute for $(x+1)^2$.
- 53. $\frac{2}{x} \ln |x-1| + \ln |x|$. Integrate by partial fractions. Remember that the x^2 in the denominator adds both an x^2 and an x factor to the partial fraction method.
- 54. $-\sqrt{1-x^2}$. Substitute $u = 1 x^2$.
- 55. $-\frac{1}{2}\cos(x^2-1)$. Substitute for x^2-1 .
- 56. $x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5}$. Factor $x^5 1 = (x 1)(x^4 + x^3 + x^2 + x + 1)$. Obtain this through long division.
- 57. $\frac{(x^2+1)^5}{5} + \frac{2(x^2+1)^3}{3} + x^2 + 1$. Substitute $u = x^2 + 1$.
- 58. 0. Realize $\frac{x^3}{\sqrt{1-x^2}}$ is an odd function.
- 59. $2e^3/9 + 1/9$. Integrate by parts
- 60. $-\frac{1}{4}\cos(2x) + C$. Substitute $u = \cos(x)$.

- 61. $\ln \ln \ln x + C$. Substitute $u = \ln(x)$.
- 62. $-\frac{1}{2}\cos 2x + \frac{1}{6}\cos^3(2x) + C$ Substitute u = 2x. Remember $\sin^2(u) = 1 \cos^2(u)$.
- 63. $x \ln \sqrt{x} x/2 + C$ Remember $\ln(x^a) = a \ln(x)$. Integrate by parts.
- 64. $\frac{3}{4} \ln |x-2| + \frac{1}{4} \ln |x+2| + C$. Partial Fractions.
- 65. $e^{e^x} + C$. Note that $e^{e^x + x} = e^{e^x} e^x$. Substitute $u = e^x$.
- 66. $\ln(1 + \sin(x))$. Substitute $u = 1 + \sin(x)$.
- 67. $\frac{x^2}{2} + \ln |x 1|$. You can simplify the integrand to $x + \frac{1}{x-1}$ using long division followed by factoring.
- 68. $\frac{\ln |x|}{a^2} \frac{\ln |x^2 + a^2|}{2a^2}$. Long division followed by Partial Fractions.

69.
$$-(x^2 - a^2)^{-0.5} + C$$
. Substitute $u = x^2 - a^2$

- 70. $\frac{x^2(\ln x)^2}{2} \frac{x^2}{2}\ln x + \frac{x^2}{4} + C$. Integrate by parts twice.
- 71. $3(\ln 2 \frac{1}{2})$. Substitute $u = x^{\frac{1}{3}}$. Then $u^3 = x$ so $3u^2 du = dx$.
- 72. $\tan x x + C$. Use Trig. Identity $\tan^2(u) = \sec^2(u) 1$.
- 73. $\frac{\pi}{12}$. Note that the integrand can be written as $\frac{1}{e^{x}+\frac{1}{e^{x}}}$ which in turn equals $\frac{e^{x}}{e^{2x}+1}$. Now Substitute $u = e^{x}$. Look for the integral of ArcTan.
- 74. $-\frac{1}{36}$. Integrate by parts.
- 75. $\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{e}}\right)$. Substitute $u=-\frac{1}{x}$.
- 76. $\sqrt{x^2 + 3} + C$. Substitute $u = x^2 + 3$.
- 77. $x^2/2 + C$. Realize $e^{\ln x} = x$.
- 78. $1/2\ln(x^2+1) \ln|x+1| + C$. Partial Fractions.
- 79. $t \ln t t + C$, where $t = \sin x$. Substitute $u = \sin x$. Then integrate by parts.
- 80. $2(t \arctan(t)) + C$, where $t = \sqrt{x}$. Substitute $u = \sqrt{x}$ so $u^2 = x$ and 2udu = dx.
- 81. $(2/3)t^{3/2} + C$, where $t = \ln x$. Substitute $u = \ln x$.
- 82. $(x^2 2x + 2)e^x + C$. Integrate by parts twice.
- 83. $x \ln(x^2 + 1) 2x + 2 \arctan(x) + C$. Integrate by parts.
- 84. $t \ln t t + C$, where $t = \ln x$. Substitute $u = \ln x$. Then by parts.