(* Rebuilding the surfaces in Mathematica which appeared in the *)
(* New York Times Magazine (Photos of the American Artist *)
(* Hiroshi Sugimoto, December 5, 2004 *)
(* Oliver Knill, December 5, 2004, for Math21b, Harvard Fall 2004 *)
F1[f_,a_,b_,c_,d_,n_]:=ParametricPlot3D[f[u,v],{u,a,b},{v,c,d},
Boxed->False,Axes->False,PlotPoints->n,AspectRatio->1,
ViewPoint->{0,1,0},ViewVertical -> {0,0,-1}]
f1[u_,v_]:={Sinh[v] Cos[u],Sinh[v] Sin[u],NIntegrate[Sqrt[1-Cosh[t]^2/4],{t,0,v}]}
S1=F1[f1,0,2Pi,0,ArcCosh[4],30]
f2[u_,v_]:={Sinh[v] Cos[u],Sinh[v] Sin[u],u}
S2=F1[f2,0,2Pi,-10,10,50]
f3[u_,v_]:={Cos[u]/Cosh[v],Sin[u]/Cosh[v],v-Tan[v]+3 u}
S3=F1[f3,0,2Pi,-1.5,1.5,50]
f4[u_,v_]:={Cos[u] Cos[v]*4/5,Sin[u] Cos[v]*4/5,
NIntegrate[Sqrt[1-Sin[t]^2*u/(2Pi)],{t,0,v}]}
S4=F1[f4,0,2Pi,0,2Pi,30]
f5[u_,v_]:={Cosh[v] Cos[u],Cosh[v] Sin[u],NIntegrate[Sqrt[1-Sinh[t]^2/4],{t,0,v}]}
S5=F1[f5,0,2Pi,-ArcSinh[2],ArcSinh[2],30]
f6[u_,v_]:={2 Sqrt[1+u^2] Sin[v] Cos[u-ArcTan[u]]/(1+u^2 Sin[v]^2),
2 Sqrt[1+u^2] Sin[v] Sin[u-ArcTan[u]]/(1+u^2 Sin[v]^2),
Log[Tan[v/2]]+2 Cos[v]/(1+u^2 Sin[v]^2)};
S6=F1[f6,0,6,0,4,30]
Get["Graphics`ContourPlot3D`"];
eqn = 81 (x^3 + y^3 + z^3) - 189 (x^2y + x^2z + y^2x + y^2z + z^2x + z^2y) +
54x y z + 126 (x y + x z + y z) - 9 1(x^2+y^2+z^2) - 9 (x+y+z)-2;
(* eqn from http://www-sop.inria.fr/galaad/exposition/ArtGallery/clebsh.html *)
S7=ContourPlot3D[eqn,{x,-1,1},{y,-1,1},{z,-1,1}, Background->GrayLevel[0.0],
PlotPoints->5,Boxed->False,Axes->False]
|