Name:

MWF 9 Oliver Knill
MWF 9 Chao Li
MWF 10 Gijs Heuts
MWF 10 Yu-Wen Hsu
MWF 10 Yong-Suk Moon
MWF 11 Rosalie Belanger-Rioux
MWF 11 Gijs Heuts
MWF 11 Siu-Cheong Lau
MWF 12 Erick Knight
MWF 12 Kate Penner
TTH 10 Peter Smillie
TTH 10 Jeff Kuan
TTH 10 Yi Xie
TTH 11:30 Jeff Kuan
TTH 11:30 Jameel Al-Aidroos

- Start by printing your name in the above box and **check your section** in the box to the left.
- Do not detach pages from this exam packet or unstaple the packet.
- Please write neatly. Answers which are illegible for the grader cannot be given credit.
- Show your work. Except for problems 1-3,8, we need to see **details** of your computation.
- All functions can be differentiated arbitrarily often unless otherwise specified.
- No notes, books, calculators, computers, or other electronic aids can be allowed.
- You have 90 minutes time to complete your work.

1	20
2	10
3	10
4	10
5	10
6	10
7	10
8	10
9	10
10	10
Total:	110

Problem 2) (10 points)

a) (6 points) Match the integration regions with the integrals. Each integral matches exactly one region A-F.

Enter A-F	Integral
	$\int_{-1}^{1} \int_{-x^2}^{x^2} f(x, y) dy dx.$
	$\int_{-1}^{1} \int_{-y^2}^{y^2} f(x, y) dx dy.$
	$\int_{-1}^{1} \int_{y^2-1}^{1-y^2} f(x,y) dx dy.$
	$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} f(x,y) dx dy.$
	$\int_{-1}^{1} \int_{x^2-1}^{1-x^2} f(x,y) dy dx.$
	$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{0} f(x,y) dy dx.$

b) (4 points) Fill in one word names (like "Heat", "Wave" etc) for the partial differential equations:

Enter one word	PDE
	$g_x = g_y$
	$g_{xx} = g_{yy}$
	$g_{xx} = -g_{yy}$
	$g_x = g_{yy}$

(10 points) A function f(x,y) of two variables has level curves as shown in the picture. We also see a constraint in the form of a curve g(x,y)=0 which has the shape of the graph of the cos function. The arrows show the gradient. In this problem, each of the 10 letters A,B,C,D,E,F,G,H,K,M appears exactly once.

Enter A-P	Description
	a local maximum of $f(x,y)$.
	a local minimum of $f(x,y)$.
	a saddle point of $f(x, y)$ where $f_{xx} < 0$.
	a saddle point of $f(x, y)$ where $f_{xx} > 0$.
	a saddle point of $f(x,y)$ where f_{xx} is close to zero
	a point, where $f_x = 0$ and $f_y \neq 0$
	a point, where $f_y = 0$ and $f_x \neq 0$
	the point, where $ \nabla f $ is largest
	a local maximum of $f(x,y)$ under the constraint $g(x,y) = 0$.
	a local minimum of $f(x,y)$ under the constraint $g(x,y) = 0$.

Problem 4) (10 points)

Find and classify all the extrema of the function $f(x,y) = x^5 + y^3 - 5x - 3y$. This function measures "eat temptation" in the x=Easy-y=Tasty plane. Is there a global minimum or global maximum?

The "Easy-Tasty plane" was introduced in the XKCD cartoon titled "F&#% Grapefruits".

Problem 5) (10 points)

After having watched the latest Disney movie "Tangled", we want to build a hot air balloon with a cuboid mesh of dimension x, y, z which together with the top and bottom fortifications uses wires of total length g(x, y, z) = 6x + 6y + 4z = 32. Find the balloon with maximal volume f(x, y, z) = xyz.

Problem 6) (10 points)

- a) (8 points) Find the tangent plane to the surface $f(x, y, z) = x^2 y^2 + z = 6$ at the point (2, 1, 3).
- b) (2 points) A curve $\vec{r}(t)$ on that tangent plane of the function f(x, y, z) in a) has constant speed $|\vec{r}'| = 1$ and passes through the point (2, 1, 3) at t = 0. What is $\frac{d}{dt}f(\vec{r}(t))$ at t = 0?

Problem 7) (10 points)

- a) (5 points) Estimate $\sqrt{\sin(0.0004) + 1.001^2}$ using linear approximation.
- b) (5 points) We know f(0,0) = 1, $D_{(\frac{3}{5},\frac{4}{5})}f(0,0) = 2$ and $D_{(-\frac{4}{5},\frac{3}{5})}f(0,0) = -1$. If L(x,y) is the linear approximation to f(x,y) at the point (0,0), find L(0.06,0.08).

Problem 8) (10 points)

a) (5 points) Find the following double integral

$$\int_0^1 \int_{x^2}^{\sqrt{x}} \frac{\pi \sin(\pi y)}{y^2 - \sqrt{y}} \, dy dx \, .$$

b) (5 points) Evaluate the following double integral

$$\int \int_{R} \frac{\sin(\pi\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} \, dx dy$$

over the region

$$R = \{x^2 + y^2 \le 1, x > 0 \}.$$

Problem 9) (10 points)

a) (8 points) Find the surface area of the surface parametrized as

$$\vec{r}(u,v) = \langle u - v, u + v, (u^2 - v^2)/2 \rangle$$
,

where (u, v) is in the unit disc $R = \{u^2 + v^2 \le 1\}$.

b) (2 points) Give a nonzero vector \vec{n} normal to the surface at $\vec{r}(4,2) = \langle 2,6,6 \rangle$.

Problem 10) (10 points)

a) (6 points) Integrate

$$\int_0^{\pi/2} \int_x^{\pi/2} \frac{\cos(y)}{y} \, dy dx$$

b) (4 points) Find the moment of inertia

$$\iint_R (x^2 + y^2) \, dy dx \,,$$

where R is the ring $1 \le x^2 + y^2 \le 9$.