
IMAGE AND KERNEL Math 21b, O. Knill

IMAGE. If T : Rn → Rm is a linear transformation, then {T (~x) | ~x ∈ Rn} is called the image of T . If
T (~x) = A~x, then the image of T is also called the image of A. We write im(A) or im(T ).

EXAMPLES.

1) If T (x, y, z) = (x, y, 0), then T (~x) = A



x
y
z


 =




1 0 0
0 1 0
0 0 0





x
y
z


. The image of T is the x− y plane.

2) If T (x, y)(cos(φ)x − sin(φ)y, sin(φ)x + cos(φ)y) is a rotation in the plane, then the image of T is the whole
plane.
3) If T (x, y, z) = x+ y + z, then the image of T is R.

SPAN. The span of vectors ~v1, . . . , ~vk in Rn is the set of all combinations c1~v1 + . . . ck~vk, where ci are real
numbers.

PROPERTIES.
The image of a linear transformation ~x 7→ A~x is the span of the column vectors of A.
The image of a linear transformation contains 0 and is closed under addition and scalar multiplication.

KERNEL. If T : Rn → Rm is a linear transformation, then the set {x | T (x) = 0 } is called the kernel of T .
If T (~x) = A~x, then the kernel of T is also called the kernel of A. We write ker(A) or ker(T ).

EXAMPLES. (The same examples as above)
1) The kernel is the z-axes. Every vector (0, 0, z) is mapped to 0.
2) The kernel consists only of the point (0, 0, 0).
3) The kernel consists of all vector (x, y, z) for which x+ y + z = 0. The kernel is a plane.

PROPERTIES.
The kernel of a linear transformation contains 0 and is closed under addition and scalar multiplication.

IMAGE AND KERNEL OF INVERTIBLE MAPS. A linear map ~x 7→ A~x, Rn 7→ Rn is invertible if and only
if ker(A) = {~0} if and only if im(A) = Rn.

HOW DO WE COMPUTE THE IMAGE? The rank of rref(A) is the dimension of the image. The column
vectors of A span the image. (Dimension will be discussed later in detail).

EXAMPLES. (The same examples as above)

1)




1
0
0


 and




0
1
0




span the image.

2)

[
cos(φ)
− sin(φ)

]
and

[
sin(φ)
cos(φ)

]

span the image.

3) The 1D vector
[

1
]

spans the
image.

HOW DO WE COMPUTE THE KERNEL? Just solve A~x = ~0. Form rref(A). For every column without
leading 1 we can introduce a free variable si. If ~x is the solution to A~xi = 0, where all sj are zero except si = 1,
then ~x =

∑
j sj~xj is a general vector in the kernel.

EXAMPLE. Find the kernel of the linear map R3 → R4, ~x 7→ A~x with A =




1 3 0
2 6 5
3 9 1
−2 −6 0


. Gauss-Jordan

elimination gives: B = rref(A) =




1 3 0
0 0 1
0 0 0
0 0 0


. We see one column without leading 1 (the second one). The

equation B~x = 0 is equivalent to the system x + 3y = 0, z = 0. After fixing z = 0, can chose y = t freely and

obtain from the first equation x = −3t. Therefore, the kernel consists of vectors t



−3
1
0


. In the book, you

have a detailed calculation, in a case, where the kernel is 2 dimensional.



domain

codomain

kernel

image

WHY DO WE LOOK AT THE KERNEL?

• It is useful to understand linear maps. To which
degree are they non-invertible?

• Helpful to understand quantitatively how many
solutions a linear equation Ax = b has. If x is
a solution and y is in the kernel of A, then also
A(x + y) = b, so that x + y solves the system
also.

WHY DO WE LOOK AT THE IMAGE?

• A solution Ax = b can be solved if and only if b
is in the image of A.

• Knowing about the kernel and the image is use-
ful in the similar way that it is useful to know
about the domain and range of a general map
and to understand the graph of the map.

In general, the abstraction helps to understand topics like error correcing codes (Problem 53/54 in Bretschers
book), where two matrices H,M with the property that ker(H) = im(M) appear. The encoding x 7→ Mx is
robust in the sense that adding an error e to the result Mx 7→ Mx + e can be corrected: H(Mx + e) = He
allows to find e and so Mx. This allows to recover x = PMx with a projection P .

PROBLEM. Find ker(A) and im(A) for the 1× 3 matrix A = [5, 1, 4], a row vector.
ANSWER. A · ~x = A~x = 5x + y + 4z = 0 shows that the kernel is a plane with normal vector [5, 1, 4] through
the origin. The image is the codomain, which is R.

PROBLEM. Find ker(A) and im(A) of the linear map x 7→ v × x, (the cross product with v.
ANSWER. The kernel consists of the line spanned by v, the image is the plane orthogonal to v.

PROBLEM. Fix a vector w in space. Find ker(A) and image im(A) of the linear map from R6 to R3 given by
x, y 7→ [x, v, y] = (x× y) · w.
ANSWER. The kernel consist of all (x, y) such that their cross product orthogonal to w. This means that the
plane spanned by x, y contains w.

PROBLEM Find ker(T ) and im(T ) if T is a composition of a rotation R by 90 degrees around the z-axes with
with a projection onto the x-z plane.
ANSWER. The kernel of the projection is the y axes. The x axes is rotated into the y axes and therefore the
kernel of T . The image is the x-z plane.

PROBLEM. Can the kernel of a square matrix A be trivial if A2 = 0, where 0 is the matrix containing only 0?
ANSWER. No: if the kernel were trivial, then A were invertible and A2 were invertible and be different from 0.

PROBLEM. Is it possible that a 3× 3 matrix A satisfies ker(A) = R3 without A = 0?
ANSWER. No, if A 6= 0, then A contains a nonzero entry and therefore, a column vector which is nonzero.

PROBLEM. What is the kernel and image of a projection onto the plane Σ : x− y + 2z = 0?
ANSWER. The kernel consists of all vectors orthogonal to Σ, the image is the plane Σ.

PROBLEM. Given two square matrices A,B and assume AB = BA. You know ker(A) and ker(B). What can
you say about ker(AB)?
ANSWER. ker(A) is contained in ker(BA). Similar ker(B) is contained in ker(AB). Because AB = BA, the

kernel of AB contains both ker(A) and ker(B). (It can be bigger: A = B =

[
0 1
0 0

]
.)

PROBLEM. What is the kernel of the partitioned matrix

[
A 0
0 B

]
if ker(A) and ker(B) are known?

ANSWER. The kernel consists of all vectors (~x, ~y), where ~x in ker(A) and ~y ∈ ker(B).


