Homework 11: Linear spaces

This homework ¹ is due on Friday, February 23, respectively on Thursday, February 22, 2018.

- 1 Which of the following spaces are linear spaces?
 - a) All 4×4 matrices for which the diagonal entries are all zero.
 - b) All 4×4 matrices for which the product of all matrix entries is zero.
 - c) All polynomials of degree exactly 4.
 - d) All 2 × 2 projection dilation matrices $A = \begin{vmatrix} a^2 & ab \\ ab & b^2 \end{vmatrix}$.
 - e) All 2×2 matrices A for which $A^2 = 0$.
 - f) All functions f in C(R) for which f(5) = 0.
 - g) All functions f in $C^{\infty}(R)$ for which f''(0) = f'(1).
 - h) All functions f in $C^{\infty}(R)$ for which $f(0)^2 + f''(2) = 0$.

$$\frac{2}{2}$$
 Find a basis for the space of

- a) all 2 × 2 rotation dilation matrices $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$. b) all 2 × 2 reflection dilation matrices $\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$.
- c) all 2×2 horizontal shears. (Trick question! Why?)
- d) all the 2×2 matrices for which Ae_1 is parallel to e_1 .
- e) all the diagonal 3×3 matrices.
- f) all the 2×2 dilation matrices.
- 3 Find a basis for all the 2×2 matrices A for which $A\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

¹While not much seems to happen in this lecture we actually make a giant step. The language of linear algebra is pushed into realms where it originally was not used like to spaces of functions used in calculus. You can now look at a spread sheet or picture or movie or a table in a relational database and see it as a vector in a linear space.

- 4 A function is called **even** if f(-x) = f(x) for all x. A function is called **odd** if f(-x) = -f(x) for all x. Find a basis:
 - a) for all the even polynomials in $P_4(R)$
 - b) for all the odd polynomials in $P_4(R)$.
 - c) for all polynomials f in $P_4(R)$ for which f(0) = 0.
- 5 a) Find a concrete 3×3 matrix A with no zeros for which $A\vec{v} = \vec{0}$, where $\vec{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$.

b) Let V be the set of 3×3 matrices for which \vec{v} is in the kernel. Is this a linear space?

Linear space

A set V in which we can add, scale and which contains a 0 is a **linear space**. To check that V is a linear space, verify (i) 0 is in X, (ii) if x and y are both in X, then x + y is in X, (iii) if x is in X, then λx is in X for all constants c. There are three important classes of linear spaces: first the subspaces of \mathbb{R}^n as treated before, the second class is the set M(n,m) of all $n \times m$ matrices. Finally, there is the class $C(\mathbb{R})$ for all continuous functions on the real line. It contains the linear space $C^{\infty}(\mathbb{R})$ for all smooth functions, functions which can be differentiated arbitrary often. We also write $P_n(\mathbb{R})$ for the set of polynomials of degree less or equal to n. It has dimension n + 1. In order to check whether a subset of functions or matrices or vectors in \mathbb{R}^n are a linear space, check the three things (i),(ii),(iii). In the case of functions, 0 is the function which is 0 for all x.