Unit 15: Double Integrals

Lecture

15.1. If \(f(x) \) is a continuous function, the Riemann integral \(\int_a^b f(x) \, dx \) is defined as the limit of the Riemann sums \(S_n f(x) = \frac{1}{n} \sum_{k/n \in [a,b]} f(k/n) \) for \(n \to \infty \). The derivative of \(f \) is the limit of difference quotients \(D_n f(x) = n[f(x + 1/n) - f(x)] \) as \(n \to \infty \). The integral \(\int_a^b f(x) \, dx \) is the signed area under the graph of \(f \) and above the \(x \)-axes, where “signed” indicates that area below the \(x \)-axes has negative sign. The function \(F(x) = \int_0^x f(y) \, dy \) is called an anti-derivative of \(f \). It is determined up a constant. The fundamental theorem of calculus states

\[
F'(x) = f(x), \quad \int_0^x f(x) = F(x) - F(0).
\]

It allows to compute integrals by inverting differentiation so that differentiation rules become integration rules: the product rule leads to integration by parts, the chain rule becomes partial integration.

Definition: If \(f(x, y) \) is continuous on a region \(R \), the integral \(\iint_R f(x, y) \, dx \, dy \) is defined as the limit of the Riemann sum

\[
\frac{1}{n^2} \sum_{(\frac{i}{n}, \frac{j}{n}) \in R} f(\frac{i}{n}, \frac{j}{n})
\]

when \(n \to \infty \). We write also \(\iint_R f(x, y) \, dA \), where \(dA = dx \, dy \) is a notation standing for “an area element”.

15.2. Fubini’s theorem allows to switch the order of integration over a rectangle if the function \(f \) is continuous:
Theorem: \(\int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy. \)

Proof. For every \(n \), there is the "quantum Fubini identity"
\[
\sum_{\frac{i}{n} \in [a,b]} \sum_{\frac{j}{n} \in [c,d]} f(\frac{i}{n}, \frac{j}{n}) = \sum_{\frac{j}{n} \in [c,d]} \sum_{\frac{i}{n} \in [a,b]} f(\frac{i}{n}, \frac{j}{n})
\]
holding for all functions. Now divide both sides by \(n^2 \) and take the limit \(n \to \infty \). This is possible for continuous functions. Fubini’s theorem only holds for rectangles. We extend the class of regions now to so called Type I and Type II regions:

Definition: A type I region is of the form

\[R = \{(x, y) \mid a \leq x \leq b, \ c(x) \leq y \leq d(x) \} . \]

An integral over a type I region is called a type I integral

\[
\int \int_R f \, dA = \int_a^b \int_{c(x)}^{d(x)} f(x, y) \, dy \, dx .
\]

A type II region is of the form

\[R = \{(x, y) \mid c \leq y \leq d, \ a(y) \leq x \leq b(y) \} . \]

An integral over such a region is called a type II integral

\[
\int \int_R f \, dA = \int_c^d \int_{a(y)}^{b(y)} f(x, y) \, dx \, dy .
\]

15.3. Similarly as we could see in one dimensions an integral as a signed area, one can interpret \(\int \int_R f(x, y) \, dy \, dx \) as the **signed volume** of the solid below the graph of \(f \) and above \(R \) in the \(xy \)-plane. As in 1D integration, the volume of the solid below the \(xy \)-plane is counted negatively.

Examples

15.4. If we integrate \(f(x, y) = xy \) over the unit square we can sum up the Riemann sum for fixed \(y = j/n \) and get \(y/2 \). Now perform the integral over \(y \) to get \(1/4 \). This example shows how to reduce double integrals to single variable integrals.

15.5. If \(f(x, y) = 1 \), then the integral is the **area** of the region \(R \). The integral is the limit \(L(n)/n^2 \), where \(L(n) \) is the number of lattice points \((i/n, j/n) \) contained in \(R \).
15.6. The value \(\frac{\iint f(x, y) \, dA}{\iint 1 \, dA} \) is the **average** value of \(f \).

15.7. Integrate \(f(x, y) = x^2 \) over the region bounded above by \(\sin(x^3) \) and bounded below by the graph of \(-\sin(x^3) \) for \(0 \leq x \leq \pi \). The value of this integral has a physical meaning. It is called **moment of inertia**.

\[
\int_0^{\pi/3} \int_{-\sin(x^3)}^{\sin(x^3)} x^2 \, dy \, dx = 2 \int_0^{\pi/3} \sin(x^3) x^2 \, dx
\]

We have now an integral, which we can solve by substitution

\[
-\frac{2}{3} \cos(x^3)|_0^{\pi/3} = \frac{4}{3}.
\]

15.8. Integrate \(f(x, y) = y^2 \) over the region bounded by the \(x \)-axes, the lines \(y = x + 1 \) and \(y = 1 - x \). The problem is best solved as a type I integral. As you can see from the picture, we would have to compute 2 different integrals as a type I integral. To do so, we have to write the bounds as a function of \(y \): they are \(x = y - 1 \) and \(x = 1 - y \)

\[
\int_0^1 \int_{x-1}^{1-x} y^2 \, dy \, dx = 1/6.
\]

15.9. Let \(R \) be the triangle \(1 \geq x \geq 0, 0 \leq y \leq x \). What is

\[
\iint_R e^{-x^2} \, dxdy?
\]

The type II integral \(\int_0^1 \left[\int_0^1 e^{-x^2} \, dx \right] dy \) can not be solved because \(e^{-x^2} \) has no antiderivative in terms of elementary functions.

The type I integral \(\int_0^1 \left[\int_0^x e^{-x^2} \, dy \right] dx \) however can be solved:

\[
= \int_0^1 xe^{-x^2} \, dx = -\frac{e^{-x^2}}{2} \bigg|_0^1 = \frac{(1 - e^{-1})}{2} = 0.316... .
\]

15.10. The area of a disc of radius \(R \) is

\[
\int_{-\pi}^{\pi} \int_{-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} 1 \, dy \, dx = \int_{-R}^{R} 2\sqrt{R^2 - x^2} \, dx.
\]

Substitute \(x = R \sin(u), dx = R \cos(u) \), to get

\[
\int_{-\pi/2}^{\pi/2} 2\sqrt{R^2 - R^2 \sin^2(u)} R \cos(u) \, du = \int_{-\pi/2}^{\pi/2} 2R^2 \cos^2(u) \, du = R^2 \pi.
\]
Homework

This homework is due on Tuesday, 7/21/2020.

Problem 15.1: a) (4 points) Find the iterated integral
\[\int_0^1 \int_0^2 6xy/\sqrt{x^2 + (y^2/2)} \, dy \, dx . \]
b) (4 points) Now compute
\[\int_0^1 \int_0^2 6xy/\sqrt{x^2 + y^2/2} \, dx \, dy . \]
c) (2 points) Wouldn’t Fubini assure that a) and b) are the same? What change would be needed in b) to make the results agree?

Problem 15.2: Find the area of the region
\[R = \{ (x, y) \mid 0 \leq x \leq 2\pi, \sin(x) - 1 \leq y \leq \cos(x) + 2 \} \]
and use it to compute the average value \(\int \int_R f(x, y) \, dx\, dy / \text{area}(R) \) of \(f(x, y) = y \) over that region.

Problem 15.3: Find the volume of the solid lying under the paraboloid \(z = 3x^2 + 3y^2 \) and above the rectangle \(R = [-2, 2] \times [-2, 3] = \{ (x, y) \mid -2 \leq x \leq 2, -2 \leq y \leq 3 \} \).

Problem 15.4: Calculate the iterated integral \(\int_0^1 \int_{x^2}^{2-x} (x^2 - y) \, dy \, dx \).
Sketch the corresponding bottom to top region. Write this integral as integral over left to right region and compute the integral again.

Problem 15.5: There is only one way to identify zombies: throw two difficult integrals at them and see whether they can solve them. Prove that you are not a zombie!
a) (6 points) Find the integral
\[\int_0^1 \int_0^{y^2} \frac{3x^7}{\sqrt{x} - x^2} \, dx \, dy . \]
b) (4 points) Integrate
\[\int_0^1 \int_0^{\sqrt{1-y^2}} 11(x^2 + y^2)^{10} \, dx \, dy . \]
You might want to “time travel” one lecture forward, where polar coordinates are known to solve this problem.