Some frequently used commands:
|
Plot[ x Sin[x],{x,-10,10}] | Graph function of one variable |
Plot3D[ Sin[x y],{x,-2,2},{y,-2,2}] | Graph function of two variables |
ParametricPlot[ {Cos[3 t],Sin[5 t]} ,{t,0,2Pi}] | Plot planar curve |
ParametricPlot3D[ {Cos[t],Sin[t],t} ,{t,0,4Pi},AspectRatio->1] | Plot space curve |
ParametricPlot3D[ {Cos[t] Sin[s],Sin[t] Sin[s],Cos[s]},{t,0,2Pi},{s,0,Pi}] | Parametric Surface |
ContourPlot[ Sin[x y],{x,-2,2},{y,-2,2} ] | Contour lines (traces) |
Integrate[ x Sin[x], x] | Integrate symbolically |
NIntegrate[ Exp[-x^2],{x,0,10}] | Integrate numerically |
D[ Cos^5[x],x ] | Differentiate symbolically |
Series[Exp[x],{x,0,3} ] | Taylor series |
DSolve[ x''[t]==-x[t],x,t ] | Solution to ODE |
ContourPlot3D[x^2+2y^2-z^2==1,{x,-2,2},{y,-2,2},{z,-2,2}] | Implicit surface |
ClassifyCriticalPoints[f_,{x_,y_}] := Module[{X,P,H,g,d,S},
X={x,y}; P=Solve[Thread[D[f,#] & /@ X==0],X];H=Outer[D[f,#1,#2]&,X,X];g=H[[1,1]];d=Det[H];
S[d_,g_]:=If[d<0,"saddle",If[g>0,"minimum","maximum"]];
TableForm[{x,y,d,g,S[d,g],f} /. Sort[P],TableHeadings->{None,{x,y,"D","f_xx","Type","f"}}]]
ClassifyCriticalPoints[4 x y - x^3 y - x y^3,{x,y}]
Here is an example on how to solve a Lagrange problem for functions of 2 variables:
F[x_,y_]:=2x^2+4 x y
G[x_,y_]:=x^2 y
Solve[{D[F[x,y],x]== L*D[G[x,y],x],D[F[x,y],y]==L*D[G[x,y],y],G[x,y]==1},{x,y,L}]
and here an example with functions of 3 variables:
F[x_,y_,z_]:=x^2+y^2+z^2;
G[x_,y_,z_]:=x-y^2+z;
Solve[{D[F[x,y,z],x]== L*D[G[x,y,z],x],
D[F[x,y,z],y]== L*D[G[x,y,z],y],
D[F[x,y,z],z]== L*D[G[x,y,z],z],
G[x,y,z]==1},{x,y,z,L}]
or with two constraints:
F[x_, y_, z_] := x^2 + y^2 + z^2;
G[x_, y_, z_] := x - y^2 + z;
H[x_, y_, z_] := x + y - 2;
Solve[{
D[F[x, y, z], x] == L*D[G[x, y, z], x] + M*D[H[x, y, z], x],
D[F[x, y, z], y] == L*D[G[x, y, z], y] + M*D[H[x, y, z], y],
D[F[x, y, z], z] == L*D[G[x, y, z], z] + M*D[H[x, y, z], z],
G[x, y, z] == 1, H[x, y, z] == 1}, {x, y, z, L, M}]
Here is an example how to check that a function solves a PDE:
f[t_,x_]:=(x/t)*Sqrt[1/t]*Exp[-x^2/(4 t)]/(1+ Sqrt[1/t] Exp[-x^2/(4 t)]);
D[f[t,x],t]+f[t,x]*D[f[t,x],x]-D[f[t,x],{x,2}]
Simplify[%] Chop[%]
|